BLM 4-3

Chapter 4 Warm-Up

Section 4.1 Warm-Up

1. For each equation, use the same number in each box to make a true statement.

- 2. Estimate the value of each square root.
 - a) $\sqrt{27}$
 - **b**) √90
 - **c)** $\sqrt{78}$

Section 4.2 Warm-Up

1. Use the exponent laws to rewrite each expression as a single power.

a)
$$(x^{3}) (x^{5})$$

b) $\frac{y^{8}}{y^{2}}$
c) $\frac{(b^{5})(b)}{b^{2}}$

2. Use the exponent laws to rewrite each expression as a single power.

a)
$$(x^5)^2$$
 b) $\frac{y^7}{(y^2)^3}$ **c)** $(b^2)^3 (b^4)^4$

3. Simplify each expression.

a)
$$(2x^3)^2$$
 b) $(4y^2)^3$ **c)** $(3x^6y^5)^2$

3. For each equation, use the same number in each box to make a true statement.

4. Evaluate.

a)
$$2^3$$
 b) 3^2 **c)** 5^3

5. Rewrite each number as a product of prime numbers.

a) 12 **b)** 90 **c)** 112

4. Evaluate.

a)
$$\frac{3}{5} \div \frac{2}{3}$$

b) $\left(\frac{1}{2}\right)^4$
c) $5 \div \frac{2}{3}$

5. What is the missing number?

a)
$$2^{\square} = 32$$

b) $\left(\frac{1}{2}\right)^{\square} = \frac{1}{16}$
c) $3^{\square} = 81$
d) $\left(\frac{1}{3}\right)^{\square} = \frac{1}{27}$

Copyright © 2009, McGraw-Hill Ryerson Limited, a subsidiary of the McGraw-Hill Companies. All rights reserved. This page may be reproduced for classroom use by the purchaser of this book without the written permission of the publisher.

Section 4.3 Warm-Up

1. Calculate without using a calculator.

a)
$$\frac{3}{4} + \frac{5}{6}$$

b) $\frac{3}{8} - \frac{1}{4}$
c) $\frac{5}{6} - \frac{1}{2} + \frac{3}{4}$

- **2.** Evaluate without using a calculator.
 - **a)** 5^{0} **b)** 2^{-3} **c)** $\left(\frac{3}{4}\right)^{-2}$ **d)** $\left(\frac{-5}{3}\right)^{-4}$

Section 4.4 Warm-Up

- **1.** Write the prime factorization for each number.
 - **a)** 54
 - **b)** 180
 - **c)** 200
- 2. Evaluate.

a) ³√125

- **b)** $-\sqrt{10\,000}$
- c) $\sqrt[3]{-64}$
- **3.** Rewrite each radical as a power.
 - **a**) √7
 - **b**) ³√-8
 - c) $\sqrt[3]{x^5}$

3. Use the exponent laws to rewrite each expression as a single power.

a)
$$(y^8) (y^{-2})$$

b) $\frac{(b^5)(b^{-1})}{b^{-3}}$
c) $(x^5)^{-2}$
d) $\frac{y^7}{(y^{-4})^{-3}}$

4. Convert each fraction to a decimal.

a)
$$\frac{7}{8}$$
 b) $\frac{4}{5}$ **c)** $\frac{11}{16}$

- **5.** A vehicle decreases in value by 15% each year. If it was worth \$35 000 when it was new, what would be its value after three years? Give the answer to the nearest dollar.
- **4.** Evaluate each expression. Write each answer as an integer or a fraction.
 - **a)** $27^{\frac{2}{3}}$ **b)** $16^{-\frac{1}{2}}$ **c)** $(-8)^{-\frac{4}{3}}$
- 5. Which of the following sequences of keystrokes will correctly evaluate $\frac{3+9}{3}$?

Hint: There may be more than one correct sequence.

3