Section 4.2 Extra Practice

- 1. Write each expression with positive exponents.
 - **a**) c^{-4}
 - **b**) mn^{-2}
 - c) $3x^{-3}$ d) $4m^3n^{-2}$
 - (a) $-2r^{-4}$

$$e_j - 2x$$

- **f)** $-5x^{-3}y^{-2}$
- **2.** Simplify each expression. State the answer using positive exponents.
 - **a)** $(2^{-2})(2^3)$
 - **b)** $(3^{0})(3^{-3})$

c)
$$\frac{5^3}{5^{-4}}$$

d) $\frac{(3^{-7})(4)}{(3^9)(4^3)}$
e) $(2^4)^3$
f) $(3^2)^{-4}$
g) $[(4)(2^{-3})]^{-2}$
h) $\left(\frac{6^2}{5^{-3}}\right)^{-3}$

- **3.** Simplify each expression. State the answer using positive exponents.
 - a) $(2xy^2)(3x^{-1}y^0)$ b) $(-3m^2n)(-4m^4n^{-2})$ c) $\frac{m^3n^{-2}}{(mn^4)(m^5n^2)}$ d) $(-3xy^4)^2$ e) $(4xy^{-3})^{-2}$ f) $-4x(5x)^3$ g) $\left(\frac{6mn^3}{4m^2n}\right)^2$ h) $\left(\frac{3x}{-2y^2}\right)^{-2}$

4. Simplify, then evaluate. Give the result as a fraction where necessary.

a)
$$5^{-2}$$

b) 7^{0}
c) $\left(\frac{6}{7}\right)^{-2}$
d) $-(-3)^{2}$
e) $\frac{1}{(-3)^{-2}}$
f) $3^{-1} + 4^{-1}$
g) $-5(m^{0} + n^{0})^{2}$
h) $\frac{5^{-1} + 5^{-2}}{5^{-3}}$
i) $\left[\left(\frac{3}{4}\right)^{-2}\right]^{3}$

- 5. A bacterial culture in a lab has 500 cells. The number of cells doubles every hour. This relationship can be modelled by the equation $N = 500(2)^{h}$, where N is the estimated number of bacteria cells and h is the time in hours.
 - a) If the conditions remain ideal, how many cells will there be after 6 h?
 - **b)** How many cells were there 2 h ago?
- 6. Dana evaluated the expression $\left(\frac{1}{2}\right)^{-3} = 8$.

Is she correct? Justify your answer.