Section 5.2 Extra Practice

- **1.** What is the greatest common factor (GCF) of each set of numbers?
 - a) 28 and 98
 - **b)** 243 and 162
 - c) 192 and 216
 - d) 90, 105, and 165
 - e) 48, 120, and 168
- **2.** Determine the least common multiple (LCM) of each set of numbers.
 - **a)** 12 and 26
 - **b)** 9 and 36
 - **c)** 6 and 15
 - **d)** 4, 5, and 12
 - e) 16, 20, and 44
- **3.** Determine the GCF of each set of terms.
 - **a)** $15x^4$ and $5x^2y$
 - **b)** –24*xy* and 8*xy*
 - c) ax^2 and -bx

d)
$$18y^4$$
, $-9y^3$, and $-27y^2$

- e) $2\pi xr$, $-2\pi xr$, and $2\pi xh$
- 4. Factor each polynomial, if possible.
 - **a)** 5*x* + 35
 - **b)** 4*x* + 23
 - **c)** 14x 8y
 - **d)** $6x^2 + 24x$
 - e) 3x + 9xy + 6xz
- 5. Identify each missing factor.
 - a) 3ax + 3ay = ()(x+y)b) $x^2 - xy = (x)()$ c) $25ab - 10ab^2 = (5ab)()$ d) $6x^2 - 3x^3 - 9x = ()(2x - x^2 - 3)$ e) $3x^3 - x^2y + 6xy^2 = (x)()$

- 6. Factor each polynomial. a) $8x^2 + 32y^3$ b) $10a + 5a^2 - 25a^3$ c) 24abc - 6ab + 8bcd) $-12x^2y^2 + 3xy^3 - 15x^3y$ e) $9\pi x^2 - 6xy + 12\pi xy^2$
- **7.** Write each expression in factored form, if possible.

a)
$$x(y+1) + 4(y+1)$$

b) $3x(a+b) - y(a+b)$
c) $4y(y+3) + (y+3)$
d) $5a(2x+1) + 3(2x-1)$

- e) 3y(x-5) 4(5-x)
- 8. Factor by grouping.

a) 5x + 15y + mx + 3myb) xy + 4x + 5y + 20c) $3ab - 3ac + 2b^2 - 2bc$ d) -5y + 3 - 6x + 10xye) $2x^2 + xz + 6xy + 3yz$

9. Write an expression in factored form to represent the area of each shaded region.

Copyright © 2009, McGraw-Hill Ryerson Limited, a subsidiary of the McGraw-Hill Companies. All rights reserved. This page may be reproduced for classroom use by the purchaser of this book without the written permission of the publisher.

BLM 5-6