
Chapter 1 Prerequisite Skills

Graphs and Lines

1. Graph each linear relation.

a)
$$y = -2x + 4$$
 b) $x = 3$
c) $3x - 4y - 12 = 0$ d) $y = \frac{1}{3}x + 4$

2. For the graph of a linear relation, determine the equation in slope *y*-intercept form.

- **3.** Determine the equation in the form y = mx + b for the line passing through each pair of points.
 - **a)** (-2, -6) and (4, -3) **b)** (3, 2) and (1, -4) **c)** (3, -1) and (6, -3)
- **4.** Use elimination to find the point of intersection of each pair of linear relations.
 - a) 2x 3y = -6 and x + y = 7
 - **b)** x 2y = -6 and 3x y = -8
- **5.** Use substitution to find the point of intersection of each pair of linear relations.

a)
$$x + y = 2$$
 and $y = 4x + 1$

b) 2x - y = 17 and x + 2y = -4

Working With Polynomials

6. Expand and simplify each expression.

a)
$$(2x-1)(3x+4)$$
 b) $(2t-3)^2$
c) $5(n+4)(n-3)$ d) $\frac{3}{4}(2x-5)(6x+1)$

7. Factor completely.

a)
$$x^2 - 2x + 1$$

b) $x^2 + x - 20$
c) $3x^2 + 3x - 6$
d) $-8x^2 - 8x + 6$

- **8.** Identify if each quadratic expression is a perfect square trinomial. For the perfect square trinomials, write the factored form.
 - **a)** $x^2 + 2x + 12$ **b)** $4n^2 - 4n + 1$ **c)** $x^2 + 8x + 16$ **d)** $3x^2 + 6x + 9$

9. Determine the value of *k* that makes each expression a perfect square trinomial.

BLM 1-1

a)
$$x^2 + 4x + k$$

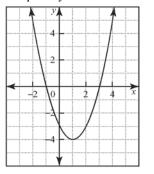
b) $x^2 - 12x + k$
c) $x^2 - x + k$
d) $x^2 - 5x + k$

10. Factor the rational coefficient of the x^2 -term in each expression.

a)
$$-\frac{2}{3}x^2 + 3x$$

b) $\frac{1}{4}x^2 - \frac{5}{4}x$
c) $\frac{3}{4}x^2 + 12x$
d) $-\frac{3}{5}x^2 + 4x$

Quadratic Relations


11. For each quadratic relation, state

- i) the coordinates of the vertex
- ii) the equation of the axis of symmetry
- iii) the direction of opening
- iv) the *y*-intercept

Then, sketch a graph of the relation.

a)
$$y = -3(x+2)^2 + 7$$
 b) $y = \frac{1}{2}(x-4)^2 - 5$

12. Determine the equation of the quadratic relation that corresponds to the graph. It has the same shape as $y = x^2$.

13. Complete the square to express each quadratic relation in the form $y = a(x - h)^2 + k$. Then, give the coordinates of the vertex.

a)
$$y = x^2 - 2x + 4$$
 b) $y = 3x^2 + 18x + 16$

14. a) Without graphing, predict how the graphs of the equations in each pair will differ. Explain your reasoning.

i)
$$y = (x - 1)^2 - 4$$
 and $y = (x + 1)^2 - 4$

ii)
$$y = 2(x + 2)^2 + 2$$
 and $y = 2(x + 2)^2 - 2$

b) Use Technology Verify your answers to part a) by graphing the two equations using a graphing calculator.

