Date:

1.1 Functions, Domain, and Range

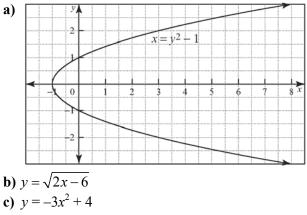
Chapter 1 Review

1. List the range for the domain $\{-2, -1, 0, 1, 2\}$ for each relation.

a)
$$y = 2x + 5$$

b) $y = \frac{4}{x}$
c) $x^2 + y^2 = 4$

2. Determine the domain and range of each relation.



3. List the relations from questions 1 and 2 that are functions.

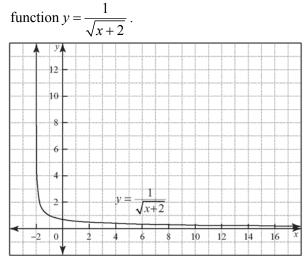
1.2 Functions and Function Notation

4. a) Complete the table of values for the relation $y = (x + 3)^2 = 5$

$y = (x+3)^2 - 5.$	
x	У
-6	
-5	
-4	
-3	
-2	
-1	
0	

b) Graph the relation using the coordinates from the table of values.

5. The given graph represents the



- a) State the domain and range of the function.
- **b)** Explain why $x \neq -2$.
- c) What is the line x = -2 called?

1.3 Maximum or Minimum of a Quadratic Function

- **6.** Use partial factoring to locate the vertex. State if the vertex is a minimum or a maximum.
 - a) $y = -x^2 + 4x + 11$ b) $y = 3x^2 - 18x + 14$ c) $y = 5x^2 + 14x - 21$ d) $y = -2x^2 - 11x + 1$
- 7. A commercial airplane uses fuel at a rate, *R*, in litres per hour, given by the function

$$R(v) = \frac{v^2 - 500v + 100\ 000}{100}$$
, where v is the

aircraft's speed, in kilometres per hour.

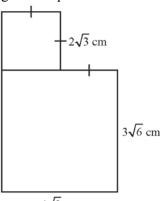
- a) At what speed is the airplane operating at the minimum rate of fuel consumption?
- **b)** What is the minimum rate of consumption?
- c) At this speed, how many litres of fuel will the plane use for a 1700-km flight?

1.4 Skills You Need: Working With Radicals

8. Simplify.
a)
$$3\sqrt{3}(\sqrt{27} - 2\sqrt{2})$$

b) $2\sqrt{125} - 3\sqrt{5} + 2\sqrt{25}$
c) $(\sqrt{3} + 1)(\sqrt{3} - 1)$
d) $(\sqrt{2} + 1)(3 - \sqrt{3}) + \sqrt{3}(\sqrt{2} - 3)$

9. Find the simplified expression for the area of the given shape.



$4\sqrt{3}$ cm

1.5 Solving Quadratic Equations

10. Solve the following equations by the indicated method.

a) $12x^2 + 52x - 40 = 0$; factoring

- **b**)-3x + 12x + 5 = 0; completing the square
- c) $2x^2 + 4x 5 = 0$; quadratic formula
- **11.** What value(s) of k will allow the equation $x^2 + kx = 10$ to be solved by factoring?
- 12. The flight of a soccer ball can be approximated using the equation $h(t) = 25t 5t^2$, where *h* is the ball's height, in metres, and *t* is the time, in seconds, after the ball is kicked.
 - a) Determine the total length of time the soccer ball will be in the air.
 - **b)** When does the ball reach its maximum height?
 - c) What is the maximum height?

1.6 Determine a Quadratic Equation Given Its Roots

- 13. Jakob tells his friend Alex that for the relation $y = ax^2 + bx + c$, the values for *a* and *b* do not have any effect on the *y*-intercept of the function. Is Jakob correct? Explain why or why not.
- 14. A quadratic function has roots of $1 \pm \sqrt{3}$ and passes through the point (1, -9). Find the equation of the function.

1.7 Solve Linear-Quadratic Systems

- 15. Determine the points of intersection of the line y = -2x + 3 with the quadratic function $y = 2x^2 + 4x 5$.
- 16. For what *y*-intercept will the line y = 2x + bintersect the curve $y = \frac{1}{4}x^2 + 6x + 2$ at one point?
- **17. Use Technology** Verify the solution to question 16 using a graphing calculator.

