Section 2.1 Investigate

BLM 2-2

Investigate

How can you determine whether expressions are equivalent?

In grade 10, you studied three forms of the quadratic function: standard, vertex, and factored forms. To verify that these are different versions of the same function, use a table of values.

Date:

1. Complete the table of values for each quadratic function. Show your work. The first one is done for you.

x	$f(x) = x^2 - 6x - 16$	$g(x) = (x-3)^2 - 25$	h(x) = (x+2)(x-8)
-4	$f(-4) = (-4)^2 - 6(-4) - 16$	$g(-4) = (-4 - 3)^2 - 25$	h(-4) = (-4+2)(-4-8)
	= 16 + 24 - 16	$=(-7)^2-25$	=(-2)(-12)
	= 24	= 24	= 24
-2			
0			
2			
4			

- **2. Reflect** Compare the amount of work needed to complete each column in step 1. Which form was easier to calculate?
- **3.** Expand the expressions on the right sides of the vertex form and the factored form to verify that they are equivalent to the right side of the standard form.
- **4. Reflect** Compare the amount of work needed in steps 1 and 3. In which step does it seem there is less work needed to verify that the expressions on the right sides of the functions are equivalent?
- **5. Reflect** What other method(s) exist that could be used to check if these expressions are different forms of the same function?

