Date:

3.3 Rational Exponents

1. Evaluate.

a)
$$(27)^{\frac{2}{3}}$$

b) $(125)^{-\frac{1}{3}}$
c) $\left(\frac{1}{16}\right)^{-\frac{3}{4}}$
d) $\left(\frac{32}{243}\right)^{-\frac{2}{3}}$

2. Simplify the following expressions. Leave all answers with positive exponents.

a)
$$x^{\frac{3}{5}} \times x^{\frac{2}{5}}$$

b) $n^{\frac{1}{2}} \times n^{\frac{1}{3}} \times n^{\frac{1}{4}}$
c) $(9x^2y^4)^{\frac{1}{2}} \times (125x^6y^3)^{\frac{2}{3}}$
d) $(27y^3)^{\frac{1}{3}} \times (\frac{1}{16y^4})^{-\frac{3}{4}}$

3. Simplify the following expressions. Leave all answers with positive exponents.

a)
$$(100xy)^{\frac{1}{2}} (25x^3y^2)^{-\frac{1}{2}}$$

b) $(27x^6)^{\frac{2}{3}} \div (9x^4)^{\frac{1}{2}}$
c) $(64x^2y^4)^{\frac{1}{2}} \div (16x^2y^4)^{\frac{1}{4}}$
d) $\frac{x^{-\frac{2}{3}}}{x^{-\frac{4}{5}}}$

- 4. The surface area, S, of a sphere is given by the equation $S = 4\pi r^2$. The volume, V, is given by the equation $V = \frac{4}{3}\pi r^3$.
 - a) What is the ratio of the surface area of a sphere to its volume?
 - **b)** Are there any restrictions on the variable? If so, state the restrictions.
 - c) Describe the type of function that represents the ratio in part a).
 - d) What does this function indicate about the ratio?

- **5.** A square-based prism has a height that is twice the side length of the base.
 - a) Write an expression for the surface area, *S*, of the prism in terms of the side length, *x*, of the base.
 - b) Determine the dimensions of the prism if the area of its base is
 i) 100 cm²
 ii) 25 m²
 - c) Find the total surface area of each prism in part b).
- 6. Refer to question 5.
 - a) Write an expression for the volume, *V*, of the prism in terms of the side length, *x*, of the prism's base.
 - **b)** What is the volume of each prism in part b) of question 5?
- 7. Refer to questions 5 and 6.
 - a) Find the ratio of the surface area to volume of each prism in part b) of question 5.
 - **b)** Find an expression for the surface area to volume ratio for the prism in part a) of question 5.
 - c) How are your answers to parts a) and b) related? Explain.
- **8.** Escape speed is the upward speed needed for an object to escape the gravitational pull of a celestial body. Escape speed, in metres per second, is given

by the formula
$$v_{\text{escape}} = \sqrt{\frac{2GM}{r}}$$
, where G is the

universal gravitational constant of 6.67×10^{-11} ; *M* is the mass of the body, in kilograms; and *r* is the radius of the body, in metres.

- a) Determine the escape speed for Earth, given that the mass of Earth is 5.98×10^{24} kg and the radius of Earth is 6.38×10^{6} m.
- b) Determine the escape speed for the moon, given that its mass is 7.35×10^{22} kg and its diameter is 3476 km.
- c) Rewrite the formula to express the radius, *r*, of a celestial body in terms of the other variables.
- d) The escape speed at the edge of a black hole is 3×10^8 m/s (the speed of light). Use the formula from part c) to find the radius to which Earth would need to be compressed in order to form a black hole.

