Chapter 3 Answers

1 An	oware r	novv	oru			
1. An	Sweisi	nay v	ary.			
2. a):	x^{10}	b))	,19	c) <i>m</i>	d) h^{-2}	e) <i>h</i> ⁵
f) :	r ⁵	g)	$y^{3}z^{6}$	h) <i>x</i> ⁴	i) $x^6 y^6$	j) – <i>x</i>
3. a) 1	243	b) :	512	c) -1	d) 125	
e) (625	f) 2	2	g) 256	h) 9	
4. a)						
	x			у		
	4		3	4 = 81		
	3			27		
	2			9		
	1			3		
	0			1		

b) Answers may vary. Sample answer: The values decrease by a factor of 3 as you proceed down the chart.

c)		
	x	У
	4	$3^4 = 81$
	3	27
	2	9
	1	3
	0	1
	-1	$\frac{1}{3}$
	-2	$\frac{1}{9}$
	-3	$\frac{1}{27}$

d) Answers may vary. Sample answer: Extending the pattern of dividing by 3 gives an expression of $\frac{1}{3}$, which must be equivalent to 3^{-1} .

5. a) 1 b)
$$\frac{1}{3^3}$$
 c) -1 d) $\frac{1}{4^3}$
e) $\frac{9}{4}$ f) $\frac{1}{(-2)^3}$ g) $\frac{1}{3^2 \times 2^3}$ h) $\frac{1}{6}$
6. a) $\frac{1}{-3xy}$ b) 1 c) $\frac{a^2}{b^2}$ d) $\frac{1}{3^3x^6y^9}$

7. i) domain $\{x \in \mathbb{R}\}$ ii) range $\{y \in \mathbb{R}, y \le 4\}$ iii) *x*-intercepts at (9, 0) and (0, 4); *y*-intercept at (0, 0)

Date: _

Date:

	M 3	13
(n	ano	2)
(P	aye	£)

3.1 The Nature of Exponential Growth

- **1.** a) 1, 2, 4, 8, 16, 32, 64, ...
 - **b)** $N = 2^t$, where N is the number of people who are told the rumour and t is the number of 5-min intervals that have passed since the rumour started.
 - **c)** 1, 3, 7, 16, 31, 63, ...
- **d)** approximately 40 min **2. a)** 125 000 **b)** 15 625
- c) next Wednesday

- c) Answers may vary. Sample answer: The functions have a similar growth rate, but the graph of $A = 400(2)^{2t}$ is always a larger value for any value of *t*.
- **4.** a) Answers may vary. Sample answer: The shape should look exponential.

- c) Answers may vary.
- 5. a) i) \$4494.40 ii) \$7163.39 iii) \$12 828.54
 b) At n = 0, A = \$4000, which is the initial value of the investment.

- **d)** Answers may vary. Sample answer: The relation is exponential, because the growth rate increases as *n* increases.
- e) approximately 27.6 years
- 6. a) i) \$4505.97 ii) \$7256.07 iii) \$13 162.65
 b) At t = 0, A = \$4000, which is the initial value of the investment.

- **d)** Answers may vary. Sample answer: The relation is exponential, because the growth rate increases as *n* increases.
- e) approximately 27.0 years
- **7. a)** Answers may vary. Sample answer: The more frequently that interest is paid, the faster the investment will grow.
 - **b)** Answers may vary. Sample answer: Because interest is paid more frequently than is the case in the second investment, this investment can be expected to grow faster.
 - c) approximately 26 years 11 months.

3.2 Exponential Decay: Connecting to Negative Exponents

1. a) 9 **b)**
$$\frac{1}{4}$$
 c) $\frac{1}{16}$ **d)** 27
2. a) $\frac{y^4}{9x^2}$ **b)** $-\frac{8}{a^5}$ **c)** $\frac{k^2}{2}$ **d)** $\frac{3y}{x}$

b) $16x^4$ **c)** x^9y^6 **d)** $\frac{4b^8}{9a^6}$

3. a)
$$a^6y^6$$

4. a)					
	Dev	Amount of Material Prosent (mg)			
	Day	r resent (ing)			
	0	800			
	23	400			
	46	200			
	69	100			
	92	50			
	115	25			

c)
$$A = 800 \left(\frac{1}{2}\right)^{\frac{l}{23}}$$

Answers may vary. Sample answer: The fit is an exact fit to the data.

-	
•	۹١
.	aı

Month	Amount (\$)
0	10 000.00
1	9 800.00
2	9 604.00
3	9 411.92
4	9 223.68
5	9 039.21
6	8 858.42
7	8 681.26
8	8 507.63
9	8 337.48
10	8 170.73
11	8 007.31
12	7 847.17

Name:

- c) Answers may vary. Sample answer: This is an example of a decreasing exponential function.
- d) approximately 17.7 months

6. 2.7 N

- **7. a)** 5.8×10^{-8} N
- **b)** Answers may vary. Sample answer: The negative sign indicates that the force is an attractive force.
- **8. a)** 2.57×10^{-47} N
 - **b)** Answers may vary. Sample answer: Because of the large difference in values, it can be seen that a gravitational force is much smaller (and thus weaker) than the electric force of attraction within an atom.

3.3 Rational Exponents

1. a) 9	b) $\frac{1}{5}$	c) 8	d) $\frac{9}{4}$
2. a) <i>x</i>	b) $n^{\frac{13}{12}}$	c) $75x^5y^4$	d) $24y^4$
3. a) $\frac{2}{\frac{1}{2}}$	b) 3 <i>x</i> ²	c) $4x^{\frac{1}{2}}y$	d) $x^{\frac{2}{15}}$

4. a)
$$\frac{S_V}{V} = \frac{3}{r}$$

c) Answers may vary. Sample answer: This function is a reciprocal function.

b) *r* > 0

d) Answers may vary. Sample answer: This tells us that the volume grows faster than the surface area as the radius increases.

5. a)
$$S = 10x^{2}$$

- **b)** i) 10 cm by 10 cm by 20 cm **ii)** 5 m by 5 m by 10 m **iii)** 250 m²
- 6. a) $V = 2x^3$
 - **b) i)** 2000 cm^3 **ii)** 250 m^3

Date:

7. a)
$$\frac{S}{V} = \frac{5}{x}$$

b) i) $\frac{S}{V} = \frac{1}{2}$ ii) $\frac{S}{V} = 1$

- c) Answers may vary. Sample answer: The ratios based on the calculated values are identical to the ratio that is obtained by the formula in part a) once the value of *x* is substituted into the expression.
- **8.** a) 11 182 m/s b) approximately 2375 m/s

c)
$$r = \frac{2GM}{\left(v_{\text{escape}}\right)^2}$$
 d) 0.008 864 m (approximately 9 mm)

ii) 0.49 mg

3.4 Properties of Exponential Functions

1. a)
$$A = 2000 \left(\frac{1}{2}\right)^{\frac{t}{14}}$$

b) i) 250 mg **c)** approximately 71 h

v) y = 0

- c) Answers may vary. Sample answer: If each bounce were more elastic, the factor 0.65 would increase to a value closer to 1.
- 7. a) y = 320(0.60)^t, where t is the number of half-hour increments. Answers may vary. Sample answer: The assumption is made that the decrease of medication in the bloodstream is at a constant rate of 60% each half hour.
 b) i) 41.472 mg ii) 14.93 mg
 - c) approximately 2:15 p.m.

3.5 Transformations of Exponential Functions

- **1.** a) Answers may vary. Sample answer: a translation 2 units down
 - **b)** Answers may vary. Sample answer: a translation 3 units to the left
 - c) Answers may vary. Sample answer: a horizontal

compression by a factor of
$$\frac{1}{2}$$

d) Answers may vary. Sample answer: a vertical stretch by a factor of 3, a translation 1 unit to the right, and a translation 1 unit up

horizontal asymptote of the function used to model the tree's growth.

b) Answers may vary. Sample answer: They both are decreasing functions for all of *x*, and have an

asymptote at y = 0. The function $y = \frac{1}{2x}$ has a vertical

asymptote of x = 0 that the first does not have. As well,

the function $y = \frac{1}{2x}$ drops below the x-axis but the

first does not. **6. a) i)** 1.37 m

5. a) i) 1.37 m ii) 0.38 m
b) Answers may vary. Sample answer: The factor 5 represents the height from which the ball is dropped. The factor 0.65 represents the percent (as a decimal) of the height of the previous bounce that the ball will reach on the next bounce.

Functions 11: Teacher's Resource **BLM 3–13 Chapter 3 Answers**

4. a) $y = 4^{2x}$

b) $y = 2^{4x}$ c) Answers may vary. Sample answer: The function $y = 4^{2x}$

is a horizontal compression of $y = 16^2$ by a factor of $\frac{1}{2}$.

The function $y = 2^{4x}$ is a horizontal compression by a

- d) Answers may vary. Sample answer: The three functions can be graphed on the same set of axes to show that they all overlap.
- **5.** a) Answers may vary. Sample answer: $v = 3(2^{x}) + 1$
- b) Answers may vary. Sample answer: There are many exponential functions that have these properties, so this is not a unique answer.
- 6. a) Answers may vary. Sample answer: Her graph is not correct because she has not applied the transformations in the correct order.
 - b) Answers may vary. Sample answer: As long as the stretch and reflection are done before the translations are done, there is more than one order that will result in a correct graph.
- 7. Answers may vary.

Date:

3.6 Making Connections: Tools and Strategies for Applying **Exponential Models**

- **1. a)** iii) **b)** ii) **c)** iv) **d)** i)
- **2.** a) $A = 2^{t}$, where t = 0 represents the amount at the end of the first week, and t is measured in weeks
 - ii) \$2.56 **b) i) \$0.16** iii) \$655.36
 - c) Answers may vary. Sample answer: The values would all be multiplied by 2.

```
3. a) a = 7000, b = 1.06
```

- **b)** Answers may vary. Sample answer: The value of *a* represents the amount invested. The value of b relates to the interest rate being applied to the investment in the expression 1 + i.
- c) $A = 7000(1.06)^t$
- d) Answers may vary.
- 4. a)

	CO ₂ Emissions
Year	(Mt)
0	189
5	254
10	334
15	381
20	414
25	385
30	432
35	452
40	505

c) $y = 237(1.02)^t$

Answers may vary. Sample answer: The fit is not perfect, but it does seem to approximate the data.

- e) approximately 704 Mt
- f) Answers may vary. Sample answer: There are too many factors that could change over 15 years for the calculated value to be accurate.

BLM 3-1:	3
 (page 7)	

5. a)			
	Company A		
	Year	Salary (\$)	
	0	40 000.00	
	1	41 200.00	
	2	42 436.00	
	3	43 709.08	
	4	45 020.35	
	5	46 370.96	
	6	47 762.09	
	7	49 194.95	
	8	50 670.80	
	9	52 190.93	
	10	53 756.66	

Company B			
Year	Salary (\$)		
0	44 000.00		
1	44 880.00		
2	45 777.60		
3	46 693.15		
4	47 627.02		
5	48 579.56		
6	49 551.15		
7	50 542.17		
8	51 553.01		
9	52 584.07		
10	53 635.75		

b)

c) approximately 9.8 years
d) approximately \$53 440
e) i) Company B
ii) Company A

6. a)

	Average Income (\$)		
Year	Female	Male	
0	29 050	42 913	
1	29 654	42 575	
2	30 903	42 984	
3	30 466	42 161	
4	30 274	43 362	
5	30 959	42 338	
6	30 606	41 897	
7	30 484	43 804	
8	32 553	45 070	
9	32 026	45 800	

b) and e)

- c) Female: $y = 29 453(1.009)^t$; Male: $y = 42 068(1.006)^t$
- **d)** Answers may vary. Sample answer: Women's salaries are growing at a slightly faster rate than men's salaries in these data.

Answer may vary. Sample answer: The fit for both equations is not perfect, but both seem to model the data to some extent.

- f) Female: \$36 848; Male: \$48 854
- **g)** Answers may vary. Sample answer: It is unlikely that these trends will continue exactly as seen, because it is not possible for the modelling equations to predict periods of economic slowdown or rapid economic growth.

Chapter 3 Review

Day	Number of Items
0	25
1	50
2	100
3	200
4	400
5	800
6	1600
7	3200

Date:

b) Answers may vary. Sample answer: Each term has a value that is a constant multiplication of the term before it.

3. a) (1) b) (1) c) (11)
4. a)
$$\frac{1}{5}$$
 b) 9 c) $\frac{3}{16}$
d) $\frac{5}{3}$ e) 4 f) $\frac{25}{4}$
5. a) $4 = 2000 \left(\frac{1}{-1}\right)^{\frac{t}{10}}$

5. a)
$$A = 2000 \left(\frac{1}{2}\right)^{12}$$

b) 125 mg **c)** 80 days

t

6. a)
$$A = 2000(2)^{-\frac{1}{10}}$$

b) Answers may vary. Sample answer: You can graph the two equations and notice that they overlap each other.

7. a)
$$\frac{1}{a}$$
 b) $2x^3y^7$ c) $\frac{32b^4}{a^6}$ d) $45u^2v^{10}$
8. a) $\frac{1}{3}$ b) $\frac{3}{2}$ c) 125 d) 8

9. a) \$18 061.11

b) \$18 193.97

c) Answers may vary. Sample answer: As the frequency of interest payments increases, the amount that the investment is worth increases, all other factors being equal.

10. a) \$7401.22

b) \$10 955.62 c) Answers may vary. Sample answer: As time increases, the amount that the investment is worth increases, all other factors being equal.

a) domain
$$\{x \in \mathbb{R}\}$$

c) v = 414. a) vertical stretch by a factor of 5, and translated 1 unit to the right

b) range $\{y \in \mathbb{R}, y > 4\}$

b) translated 4 units up

c) a vertical compression by a factor of 2, a translation 2 units to the left and 2 units down

Answers may vary. Sample answer: Yes, the data seem to be exponential because the rate of growth of the investment appears to be increasing over time.

- **b)** Answers may vary. Sample answer: $A = 25\ 000\ (1.1)^t$, where 25 000 represents the initial investment, and 1.1 represents the increasing factor related to the interest rate based on the expression (1 + i).
- c) \$64 843.56 d) approximately 25 years

Chapter 3 Practice Test

1. A	
2. B	
3. D	
4. C	
5. D	

b) 7 **c)** $-\frac{1}{9}$ **d)** $\frac{67}{8}$ 6. a) 32

7. a)
$$\frac{y^4}{x^3}$$
 b) $8v^{12}$ c) $\frac{48}{b^9}$ d) $\frac{3u}{v^2}$

8. Answers may vary. Sample answer: a vertical stretch by a factor of 2, a reflection in the y-axis, a translation 1 unit to the left, and a translation up 2 units.

_____ -1 0

e) Answers may vary. Sample answer: The assumption is that the growth continues to occur at the rate of 8% per year.

10. a)
$$P = A \left(1 + \frac{i}{N} \right)^{-n \times N}$$
 b) \$3000
11. a) $h = \frac{S - 2\pi r^2}{2\pi r}$ **b)** $h = (S - 2\pi r^2)(2\pi r)^{-1}$ **c)** 11 cm
12. a)

- c) Answers may vary. Sample answer: The data seem to be following an exponential relationship because the growth rate appears to be increasing over time.
- **d)** $P = 825(1.07)^t$ **e)** 1858

f) approximately 25 years

