Date:

5.6 Use Sinusoidal Functions to Model Periodic Phenomena Not Involving Angles

- 1. A sine graph can be used to model how light travels. Green light completes one full cycle in 530 nm (a nanometre is 10^{-9} metres). Yellow light completes one full cycle in 580 nm, and red light completes one full cycle in 720 nm. The amplitude is a measure of how bright the light shines. Assume that the three colours are equally bright (use an amplitude of 1 for each).
 - a) Write each colour as a sine function, using nanometres as units.
 - **b)** Graph all three functions on the same set of axes from x = 0 to x = 2000.
 - c) Estimate the number of cycles each function has in this interval.
 - **d)** Use this to explain why red light experiences the smallest path change when passing through a prism.
 - e) Based on your answer in part d) which of the other two colours should experience a greater path change?
- A wave pool at an amusement park sends out a 5-m high wave every minute.
 - a) What is the amplitude of the wave?
 - **b**) What is the period of the wave?
 - c) Model the wave using a cosine function.
 - **d)** Graph the function from t = 0 to t = 6.
 - e) Explain why a cosine function is the best choice for the situation.
- **3.** The amount of sunlight a city gets can be modelled with the function
 - $h = 4\sin\left[\frac{72}{73}(n-80)\right] + 12$, with *h* representing

the number of hours of sunlight on the *n*th day of the year.

- a) What is the period of the function?
- **b)** Determine the maximum and minimum number of hours of sunlight the city gets.
- c) How much sunlight does the city get on the 21st of February?
- **d)** How much sunlight will the city get tomorrow?

4. The fraction of the moon that is visible on a clear night is recorded.

BLM 5-11

Day of the Year	Fraction Visible
1	0.24
2	0.17
3	0.1
4	0.05
5	0.03
6	0.00
10	0.1
15	0.56
20	0.97
21	1.00
25	0.81
30	0.33
35	0.03
40	0.15
45	0.67
50	1.00
55	0.75
60	0.30
65	0.02
66	0.00

- a) Graph the data.
- b) Determine the equation of a sinusoidal function that can be used to describe the data.
- **c)** Display a graph of the data and the sinusoidal function on the same set of axes.
- d) Comment on the fit of the function.
- 5. The rabbit population in a large wooded area is given by the function $R = 2000 \cos 15t + 4000$, and the fox population in the same area is given by the function $F = 250 \sin 15t + 500$.
 - a) What property do the two functions have in common?
 - **b)** Create a graph with the two functions on the same set of axes for t = 0 to t = 24.
 - c) Explain the behaviour of the two graphs.

