6.4 Arithmetic Sequences

- 1. Given the values of *a* and *d*, write the general term. Use this general term to write the first four terms of the arithmetic sequence.
 - a) a = 2, d = -1
 b) a = -4, d = -3
 c) a = -7, d = 2
 d) a = 13, d = 4
- **2.** For each of the given general terms of the arithmetic sequence, determine
 - i) t_2 ii) t_{10} iii) t_{14} a) $t_n = -5 - n$ b) $t_n = 14 - 5n$ c) $t_n = -8 + 7n$ d) $t_n = 21 + 4n$
- **3.** Determine the term in the arithmetic sequence 4, 11, 18, 25, 32, ... that has a value of
 - **a)** 179
 - **b**) 354
 - **c)** 298
- 4. Determine the number of terms in each arithmetic sequence.a) 12, 19, 26, 33, ..., 187

b) -16, -11, -6, -1, ..., 199 **c**) -2, 0, 2, 4, 6, 8, ..., 198 **d**) 8, 5, 2, -1, ..., -172

- **5.** Verify that the sequence determined by the recursion formula $t_1 = 5$ and $t_n = t_{n-1} + 5$ is arithmetic.
- **6.** Determine the value of *a* and *d* in each of the following. Use these values to write the formula for the *n*th term.
 - **a)** $t_3 = 2, t_8 = -8$ **b)** $t_2 = 11, t_{11} = 56$ **c)** $t_5 = -1, t_6 = 1$

Date:

d)
$$t_8 = -55, t_{14} = -73$$

- **7.** For each sequence in question 6, write a recursion formula.
- **8.** A gym membership offers a decrease in the monthly fee of \$2 after the first 6 months. If the initial monthly fee is \$67, how long will it take for the monthly fee to reach \$41?
- **9.** How many multiples of 7 are there between 41 and 102?

BLM 6-7