Chapter 1 Web Task Level 3 Sample Solution

x	slope of tangent at <i>x</i>
0	-1
1	1
2	3
3	5
-1	-3
-2	-5
-3	-7

x	slope of
	tangent at x
0	-6
1	-9
2	-6
3	3
4	18
-1	3
-2	18

c)
$$y = 2x^3 - 19x^2 + 11x + 30$$

x	slope of
	tangent at x
0	11
2	-40
4	-45
6	-1
8	91
-1	55
-2	111

d)
$$y = 3x^2 + 16x - 35$$

x	slope of
	tangent at x
0	16
1	22
2	28
-1	10
-2	4
-3	-2

<u>Conjecture</u>: The degree of the function formed by values of the tangent slopes is one less than the degree of the original function.

<u>Conjecture</u>: The equation for tangent slope function can be written by lowering the power of *x* on each term in the original equation and multiplying the numerical coefficient of the term by the original exponent. So, for example the term $3x^2$ becomes 6x. My friend who is taking calculus tells me this is the derivative.

For the function y = 3x + 5 the equation for the tangent slope function would be y = 3. Yes, this works because the slope of the given linear function is 3 for all values of *x*.

<u>Check</u>: Try $y = -x^2 + 10x - 25$. Conjecture the equation of the tangent slope function is y = -2x + 10. I graphed $y = -x^2 + 10x - 25$ and found the slope at various points.

x	slope of
	tangent at x
0	10
1	8
2	6
4	2
5	0
6	-2
7	-4

I can see from this table of values that this is the line with y-intercept 10 and slope -2. My conjecture is correct.