Chapter 3 Web Task Level 3 Sample Solution

All of the functions listed, except the first, pass through (0, 0). The first has *y*-intercept 1/4.

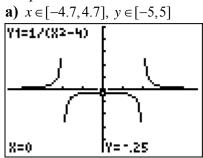
They all have asymptotes at x = 2 and x = -2.

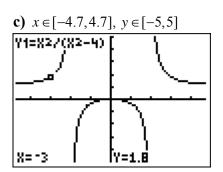
For all of these functions, the domain is $\{x \in \mathbb{R}, x \neq 2, -2\}$, the range is all real numbers.

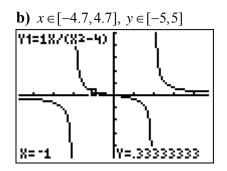
	x large and	$x \rightarrow -2^{-}$	$x \rightarrow -2^+$	$x \rightarrow 2^{-}$	$x \rightarrow 2^+$	x large and
Function	negative					positive
a) $y = \frac{1}{x^2 - 4}$	$y \rightarrow 0^+$	$y \rightarrow \infty$	$y \rightarrow -\infty$	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow 0^+$
b) $y = \frac{x}{x^2 - 4}$	$y \rightarrow 0^{-}$	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow 0^+$
c) $y = \frac{x^2}{x^2 - 4}$	$y \rightarrow 0^+$	$y \rightarrow \infty$	$y \rightarrow -\infty$	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow 0^+$
d) $y = \frac{x^3}{x^2 - 4}$	approaches y = x from below	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow -\infty$	$y \rightarrow \infty$	approaches y = x from above
e) $y = \frac{x^4}{x^2 - 4}$	$y \rightarrow \infty$	$y \rightarrow \infty$	$y \rightarrow -\infty$	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow \infty$
f) $y = \frac{x^5}{x^2 - 4}$	$y \rightarrow -\infty$	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow -\infty$	$y \rightarrow \infty$	$y \rightarrow \infty$

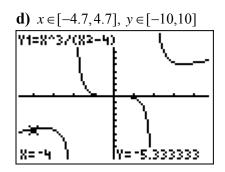
I analysed the behaviour of each function on either side of the asymptotes.

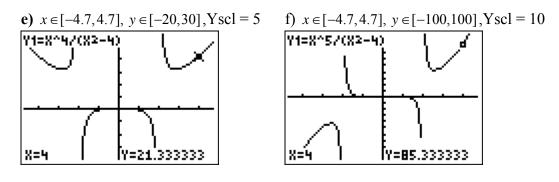
Graphs:











For rational functions of the form $y = \frac{x^n}{x^2 - a^2}$:

The *y*-intercept will be 0.

There will be asymptotes at x = a and x = -a.

The domain is $\{x \in \mathbb{R}, x \neq a, -a\}$, the range is all real numbers.

If *n* is an even number, the function has one local maximum at (0, 0). The function has line symmetry about the y-axis. For x < -a, the function will be in the second quadrant going from $+\infty$ to the left of -a, will approach the value $y = a^{n-2}$, then go back to $+\infty$ as *x* approaches $-\infty$. The reflection of this will occur in the first quadrant for x > a.

If n is an odd number, there is no maximum or minimum. There is a point of inflections at the origin. The graph has rotational symmetry about the origin.

For x > a, the graph will be in the first quadrant, going from $+\infty$ to the right of *a*, will approach the value $y = a^{n-2}$, then go back to $+\infty$ as *x* approaches $+\infty$. For x < a, a similar shape will occur in the third quadrant.

Test: $y = \frac{x^8}{x^2 - 9}$. I predict this will have asymptotes at 3 and -3, the parts either side of

the asymptotes will be in the first and second quadrant, while the part between will go from $-\infty$ in third quadrant to $-\infty$ in fourth quadrant.

