Chapter 7 Task Level 3 Sample Solution

a)		
Time, <i>t</i> , (h)	Number of Bacteria, N	$rac{N}{N_{ heta}}$
0	3 000	1
0.8	5 378	1.793
2.2	14 900	4.967
3.3	33 300	11.10
4.8	99 600	33.20
5.4	154 300	51.43

I plotted the points $(t, \frac{N}{N_0})$. Then I tried to fit a power of 2 as close as possible to the points. I found that $y = 2^{\frac{x}{0.93}}$ is a good fit. An estimate for the doubling time is 0.93 h.

b)

$$v = 2^{\frac{x}{D}}$$

Take logs of both sides:

gs of both sides:

$$\log y = \frac{x}{D} \log 2$$

Substitute $x = 0.8, y = 1.793$.
 $\log 1.793 = \frac{0.8}{D} (\log 2)$
 $D = \frac{0.8 \log 2}{\log 1.793}$
 $= 0.949 \ 695$
Check: Graph $y = 2^{\frac{x}{0.95}}$.
Check: Graph $y = 10.945$

c) Exponential regression yields the function shown below. This is not a power of base 2, so it does not help to find the doubling time.

