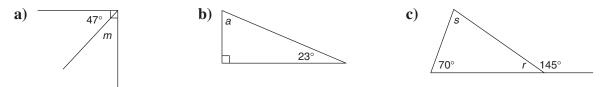
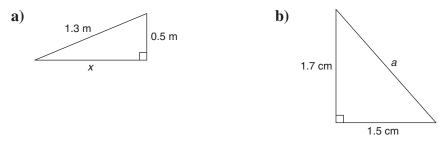
Date: _____


Get Set

Answer these questions to check your understanding of the Prerequisite Skills concepts on pages 72–73 of the *Foundations for College Mathematics 12* textbook.

۲


Geometric Properties

1. Determine the measure of each indicated angle.

The Pythagorean Theorem

2. Determine the length of the indicated side to one decimal place.

Primary Trigonometric Ratios

	decimal places. Use a ca b) cos 14°		d) sin 45°
,	the nearest degree. Use 19 b) $\tan \theta = 0.4245$		d) $\cos \theta = 0.7986$
Solve Equations 5. Solve for x to or a) $\frac{x}{5} = \frac{10}{4}$	the decimal place. b) $\frac{12}{x} = \frac{20}{3}$	c) $\frac{6.7}{2.8} = \frac{x}{4.2}$	d) $\frac{3.5}{7} = \frac{4.3}{x}$
6. Solve for <i>x</i> to on a) $x^2 = 4^2 + 11^2$	-	$5^2 = 6^2$	c) $5x = 3.5^2 + 6.5^2$

Get Set • MHR 19

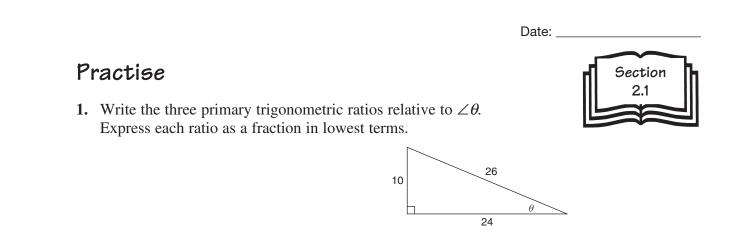
FFCM12_SW_Chapter2_Sec1.indd 19

۲

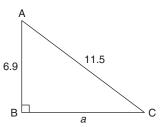
Final Pass

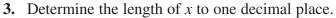
Date:

Trigonometric Ratios With 2.1 Textbook Acute Angles 74-83 Warm-Up 1. Number Skills 2. Algebra Solve for each unknown. Which set of numbers could be the side **a**) $\frac{x}{20} = \frac{3}{5}$ lengths of a right triangle? **A** 4, 6, 7 **b**) $\frac{7}{y} = \frac{28}{18}$ **B** 5, 18, 19 C 8, 15, 17 c) $\frac{3.5}{6.3} = \frac{z}{1.8}$ **D** 6, 8, 10 3. Relations 4. Geometry/Measurement Determine the value of *x* when y = 5 in What is the complementary angle for the relation $\frac{x}{3} = \frac{y}{15} + 1$. each angle? **a)** 17° **b**) 65° **c)** 48° **d**) 9° 5. Data/Probability 6. Problem Solving The angles measured in an astronomy A flagpole is 6 m tall. It is supported by project are shown. a wire that is bolted to the ground 2.5 m from the base of the pole. If the wire is 17.5°, 17.6°, 17.4°, 17.2°, attached to the top of the pole, how long is 17.6°, 17.3°, 17.9° the wire? a) What is the median angle? **b**) What is the mode angle? c) What is the mean angle? 7. Math Literacy **Previous Section** 8. What is the name for a triangle with Evaluate to four decimal places. Use angles that are all less than 90°? a calculator. **a**) sin 82° **b**) $\cos 3^{\circ}$ c) $\tan 44^{\circ}$

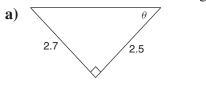

20 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

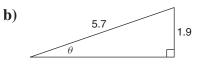
۲




Final Pass

-1


2. Determine the length of side *a*. Write the primary trigonometric ratios for $\angle A$ to two decimal places.



4. Solve for $\angle \theta$ to the nearest degree.

2.1 Trigonometric Ratios With Acute Angles • MHR 21

Final Pass

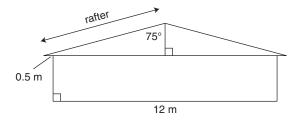
۲

 $(\mathbf{4})$

5. Solve the triangle. Express all lengths to one decimal place and all angles to the nearest degree.

В□

۲


Date: _

35°

С

6. From a distance of 10 m, the angle of elevation from the ground to the top of a tree is 38°. What is the height of the tree?

7. Determine the length of the rafter in the diagram.

8. A 6-m ladder is placed against a wall at an angle of 65° to the ground. How far up the wall will the ladder reach?

22 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

۲

Final Pass

Date:

	2.2 Trigonometric Ra Obtuse Angles arm-Up	Iti	Date:
1.	Number Skills	2.	Algebra
	Write each rational number as a decimal to two decimal places. a) $\frac{-2.5}{10}$ b) $\frac{-8.2}{3}$ c) $\frac{1.2}{-4.4}$ d) $\frac{-20}{6.7}$		Solve for each unknown. a) $\frac{x}{9} = \frac{-4}{5}$ b) $\frac{-3}{y} = \frac{15}{8}$ c) $\frac{3.9}{-2.1} = \frac{z}{0.7}$
3.	Relations	4.	Geometry/Measurement
	Determine the value of x when $y = 9$ in the relation $\frac{x}{5} = \frac{y}{15} - 2$.		If the hypotenuse of a right isosceles triangle is 2.0 cm long, how long are the other two sides? Round your answer to two decimal places.
5.	Data/Probability	6.	Problem Solving
	A circle is divided into sectors that make these angles with the centre of the circle: 30°, 45°, 75°, 90°, 120° Determine the probability of a spinner stopping in each section. Express your answer as a percent to one decimal place.		What is the diameter of the circle?
7.	Math Literacy	8.	Previous Section
	What is the name for a triangle that has one angle greater than 90°?		Solve for $\angle \theta$ to the nearest degree. 3.5

۲

2.2 Trigonometric Ratios With Obtuse Angles • MHR $\ 23$

Final Pass

FFCM12_SW_Chapter2_Sec2.indd 23

۲

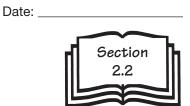
5/23/09 11:19:55 AM

Date: _

۲

Practise

- 1. The terminal arm of an angle, θ , in standard position passes through A(2, 4).
 - a) Sketch a diagram for this angle in standard position.


- **b**) Determine the length of OA.
- c) Determine the primary trigonometric ratios to three decimal places.
- 2. The terminal arm of an angle, θ, in standard position passes through B(-5, 6).
 a) Sketch a diagram for this angle in standard position.

۲

- **b**) Determine the length of OB.
- c) Determine the primary trigonometric ratios to three decimal places.
- **3.** Complete the table. For each angle, indicate whether each trigonometric ratio is positive or negative. Round your answers to three decimal places.

Angle	Sine	Cosine	Tangent
60°			
120°			
98°			
145°			
162°			

24 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

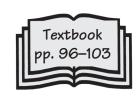
4. The sine of an obtuse angle, θ, in standard position is 3/5.
a) Sketch a diagram of ∠θ.

b) Identify the coordinates of a point that lies on the terminal arm of $\angle \theta$.

۲

- c) Determine $\cos \theta$ and $\tan \theta$.
- d) Determine the measure of $\angle \theta$, using technology.
- 5. The tangent of an obtuse angle, θ, in standard position is -1.
 a) Sketch a diagram of ∠θ.

b) Identify the coordinates of a point that lies on the terminal arm of $\angle \theta$.


c) Determine sin θ and cos θ . Round your answers to three decimal places.

d) Determine the measure of $\angle \theta$, using technology.

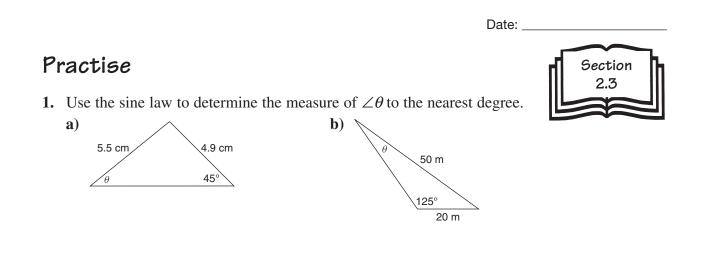
2.2 Trigonometric Ratios With Obtuse Angles • MHR 25

Date: ____

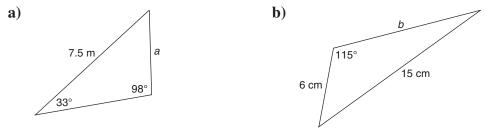
2.3 Sine Law

Warm-Up

۲


•	-			
	2.	Algebra		
Match each decimal number with its equivalent fraction.		Solve for each unknown. 9 h		
a) 0.075 A $\frac{3}{0.4}$		a) $\frac{9}{0.25} = \frac{b}{0.5}$		
b) 13.333 B $\frac{0.3}{4}$		b) $\frac{a}{0.67} = \frac{3}{0.41}$		
c) 7.5 C $\frac{4}{0.3}$		c) $\frac{0.95}{12} = \frac{0.56}{c}$		
Relations	4.	Geometry/Measurement		
Determine the <i>x</i> -intercepts of each quadratic relation. a) $y = 3x(x - 5)$		Circle all the words that apply to this triangle.		
b) $y = -2(x - 5)^2 + 8$ c) $y = x^2 - 6x + 8$	3 cm 3 cm			
		right isosceles obtuse acute equilateral scalene		
Data/Probability	6.	Problem Solving		
If you randomly choose the measure of an acute angle, what is the probability that your angle will have a tangent value greater than 1?		A kite is flying at an angle of 50° to the ground. If 40 m of string has been let out, what is the vertical height of the kite from the ground?		
Math Literacy	8.	Previous Section		
Which ratio represents the sine of an angle in a right triangle?A adjacent : hypotenuse		What are the primary trigonometric ratios for each angle? Round your answers to three decimal places.		
B opposite : hypotenuse		a) 91°		
C hypotenuse : opposite		b) 160°		
D opposite : adjacent		c) 125°		
	equivalent fraction. a) 0.075 A $\frac{3}{0.4}$ b) 13.333 B $\frac{0.3}{4}$ c) 7.5 C $\frac{4}{0.3}$ Relations Determine the <i>x</i> -intercepts of each quadratic relation. a) $y = 3x(x - 5)$ b) $y = -2(x - 5)^2 + 8$ c) $y = x^2 - 6x + 8$ C) $y = x^2 - 6x + 8$ Data/Probability If you randomly choose the measure of an acute angle, what is the probability that your angle will have a tangent value greater than 1? Math Literacy Which ratio represents the sine of an angle in a right triangle? A adjacent : hypotenuse B opposite : hypotenuse C hypotenuse : opposite	Match each decimal number with its equivalent fraction.a) 0.075A $\frac{3}{0.4}$ b) 13.333B $\frac{0.3}{4}$ c) 7.5C $\frac{4}{0.3}$ 4. Belations C $\frac{4}{0.3}$ 4.Determine the x-intercepts of each quadratic relation.a) $y = 3x(x-5)$ b) $y = -2(x-5)^2 + 8$ 6.Dista/ProbabilityFor a state of a s		

۲


26 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

Final Pass

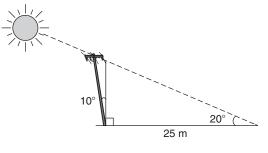
 (\bullet)

- 2. In △ABC, ∠A = 95°, a = 4.5 cm, and b = 3.5 cm.
 a) Draw and label a diagram.
 - **b**) Determine the measure of $\angle B$ to the nearest degree.
- 3. Determine the length of each indicated side to one decimal place.

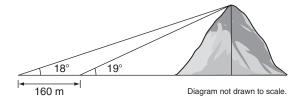
- 4. In △DEF, ∠D = 123°, ∠E = 37°, and d = 6.4 km.
 a) Draw and label a diagram.
 - **b**) Determine the length of side *e* to the nearest tenth of a kilometre.

2.3 Sine Law • MHR 27

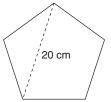
Final Pass


۲

Date: _


- 5. In \triangle JKL, \angle J = 130°, j = 9.8 cm, and k = 5.0 cm. a) Draw and label a diagram.
 - **b)** Solve \triangle JKL for all angles to the nearest degree and all side lengths to one decimal place.

۲


6. A telephone pole is leaning at an angle of 10° and casting a shadow 25 m long. The angle of elevation of the sun from the end of the shadow is 20°. What is the length of the telephone pole?

7. The angle of elevation to the top of a mountain is measured and found to be 18°. At a point 160 m closer to the mountain, the angle of elevation is 19°. What is the height of the mountain?

8. Find the perimeter of a regular pentagon with a diagonal length of 20 cm. Hint: How many triangles make up a pentagon? How can you use this information to calculate the size of each angle in the pentagon?

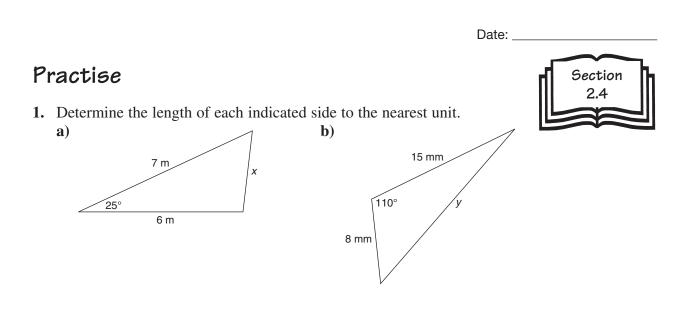
28 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

Final Pass

Date: _____

Na	arm-Up		
1.		2.	Algebra
	Evaluate to one decimal place.		Solve $a^2 = b^2 + c^2 - 2bc \times 0.375$ for <i>a</i> if $b = 6$ and $c = 8$. Round your answer to
	a) $4.5^2 + 3.4^2 - 2 \times 4.5 \times 3.4 \times 0.5$		one decimal place.
	b) $6.1^2 + 1.9^2 - 2 \times 6.1 \times 1.9 \times 0.32$		
	c) $8.5^2 + 5.3^2 - 2 \times 8.1 \times 5.3 \times 0.902$		
3.	Relations	4.	Geometry/Measurement
	Expand and simplify.		Determine the lengths of x and y in the
	a) $a(3a+1)$		two similar triangles. $$
	b) $(b+7)(2b+5)$		12 cm 24 cm
	c) $(3c-2)(5c+1)$		x
	d) $(d - 10)(d + 10)$		18 cm
5.	Data/Probability	6.	Problem Solving
	A bag contains one 5ϕ coin, one 10ϕ coin, one 25ϕ coin, and one loonie. Jan draws a coin and then puts it back. Then she draws another coin. Determine the probability that		Sketch and label the sides and angles of a right triangle that has a perimeter of 24 cr and an area of 24 cm ² .
	a) the total is 20¢		
	b) the total is not 20¢		
	c) the total is less than 50ϕ		
7.	Math Literacy	8.	Previous Section
	Which ratio represents the cosine of an angle in a right triangle?		In $\triangle ABC$, $\angle A = 110^{\circ}$, $a = 5$ cm, and $b = 3$ cm. Determine the measure of $\angle B$ to
	A adjacent : hypotenuse		the nearest degree.
	B opposite : hypotenuse		
	B opposite : hypotenuseC hypotenuse : opposite		

2.4 Cosine Law • MHR 29


Final Pass

۲

5/23/09 11:19:24 AM

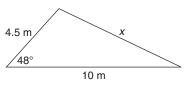
۲

- 2. In $\triangle XYZ$, x = 40 ft, y = 45 ft, and $\angle Z = 100^{\circ}$. a) Draw and label a diagram.
 - **b**) Determine the length of side *z* to the nearest foot.
- **3.** Determine the measure of each indicated angle to the nearest degree.

- 4. In \triangle ABC, a = 6.2 cm, b = 7.9 cm, and c = 12.5 cm. a) Draw and label a diagram.
 - **b**) Determine the measure of $\angle C$ to the nearest degree.

30 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

Section


2.4

5. In $\triangle RST$, $\angle R = 112^\circ$, s = 5.2 cm, and t = 4.6 cm. a) Draw and label a diagram.

b)	Solve \triangle RST for all angles to	the	nearest	degree	and a	Ill side	lengths
	to one decimal place.						

۲

6. The roof of a house is 10 m wide. A 4.5-m solar panel inclined at an angle of 48° covers the southern part of the roof. How long is the northern rafter of the roof, indicated by *x*?

7. Two roads intersect at an angle of 95°. The land at the corner has 200 m of frontage along one road and 100 m along the other. How long is the third side of the triangular lot?

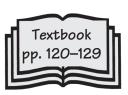
8. Two aircraft leave Thunder Bay at the same time. One flies at 550 km/h and the other flies at 450 km/h. The angle between their flight paths is 160°. How far apart will they be in 2 h?

2.4 Cosine Law • MHR 31

Final Pass

۲

۲


 $igodoldsymbol{\Theta}$

Date: _

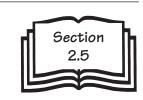
2.5

۲

Applications of Trigonometry

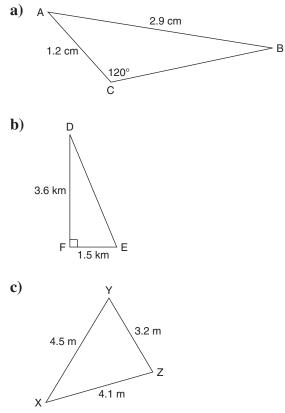
Warm-Up

1.	Number Skills	2	Algebra			
	Calculate mentally. a) $2 \times 4.5 \times 6 \times 0.5$ b) $2 \times 0.4 \times 5 \times 0.75$	2.	Given $a^2 = b^2 + c^2 - 2bc \cos A$, calculate cos A to four decimal places if $a = 3.5$, b = 6.2, and $c = 5.1$.			
	c) $2 \times 15 \times 11 \times 0.3$					
	d) $2 \times 16 \times 12.5 \times 0.25$					
3.	Relations	4.	Geometry/Measurement			
	Factor fully. a) $x^2 - 12x + 36$		Find the measure of all the angles in $\triangle ABC$.			
	b) $a^2 + 2x - 8$		A			
	c) $3b^2 + 16b + 5$					
	d) $8c^2 - 50$		B C			
5.	Data/Probability	6.	Modelling			
	How many different four-digit numbers can you make using all of these digits: 1, 1, 2, and 3?		The sides of \triangle ABC are represented by <i>a</i> , 3, and 4. Write an expression for $\cos A$.			
7.	Math Literacy	8.	Previous Section			
	 Which ratio represents the tangent of an angle in a right triangle? A adjacent : hypotenuse B opposite : hypotenuse C hypotenuse : opposite D opposite : adjacent 		What are the angles in $\triangle DEF$, if DE = 2.5 cm, EF = 2.8 cm, and DF = 2.3 cm? Round your answers to the nearest tenth of a degree.			

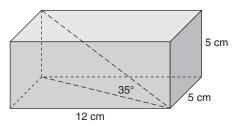

32 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

 (\bullet)

5/23/09 11:20:07 AM


Date:

Practise


1. Decide which formula to use to solve each triangle. Then, solve the triangle.

۲

- 2. The area of △ABC is 24 cm². BC measures 8 cm and ∠C is 60°.
 a) Determine the lengths of AC and AB.
 - **b**) Determine the measures of $\angle A$ and $\angle B$ to the nearest degree.
- **3.** A box in the shape of a square-based prism has measurements as shown. The diagonal makes a 35° angle with the base. What is the length of the diagonal? Hint: Mark all the right angles in the diagram.

۲

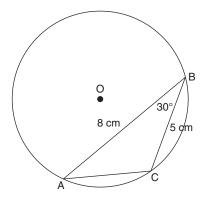
2.5 Applications of Trigonometry • MHR 33

Final Pass

FFCM12_SW_Chapter2_Sec5.indd 33

۲

5/23/09 11:20:39 AM


- Date: ___
- **4.** A golf hole is 380 yd from the tee. Sasha drove her ball 235 yd. Her drive was at an angle of 9° to the straight line to the hole. How far is her ball from the hole?

5. Two guy-wires are anchored at the same point. The first guy-wire is 12 m in length and is attached to the top of a tower. The second guy-wire is 9 m in length and is attached to a point 5 m below the top of the tower. How far are the wires anchored from the base of the tower?

۲

6. Two chords of a circle form an angle of 30° as shown. One chord is 8 cm long and the other is 5 cm long. What is the radius of the circle? Hint: Draw a diameter AD from point A and join DC. What do you know about \triangle ADC? How can you use this information to find the diameter (and the radius) of the circle?

34 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

۲

۲

5/23/09 11:20:40 AM

D

Е□

8.5 m

50

Chapter 2 Review

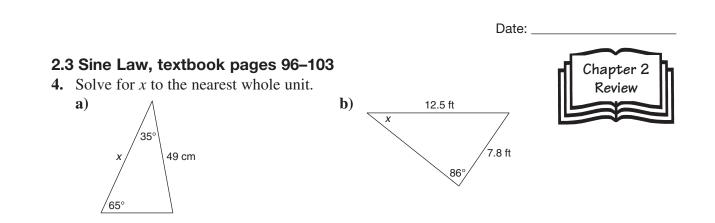
2.1 Trigonometric Ratios With Acute Angles, textbook pages 74–83

1. Solve \triangle DEF. Express all measures to one decimal place.

2. In $\triangle ABC$, $\angle C = 90^\circ$, $\angle A = 20^\circ$, and b = 21 cm. Solve the triangle. Express all measures to one decimal place.

۲

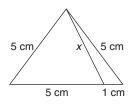
2.2 Trigonometric Ratios With Obtuse Angles, textbook pages 84–95


3. The terminal arm of an angle, θ, in standard position passes through B(-3, 7).
a) Sketch a diagram for this angle in standard position.

- **b**) Determine the length of OB.
- c) Determine the primary trigonometric ratios to three decimal places.

Final Pass

۲



2.4 Cosine Law, textbook pages 104–111

5. Two sides of a triangle are 100 mm and 85 mm in length. The angle between them is 100°. How long is the third side?

2.5 Applications of Trigonometry, textbook pages 120–129

- **6.** Two observers are 20 km apart when they spot a forest fire. The fire is 48° south-east of one observer and 37° south-west of the other observer. How far is the fire from each observer?
- 7. Determine *x* to one decimal place.

8. Find the length of the diagonal of a regular pentagon with 10 cm sides. Hint: Refer to section 2.3, question 8, in this workbook for help.

36 MHR • Chapter 2 Trigonometry 978-0-07-013107-1

۲

Final Pass