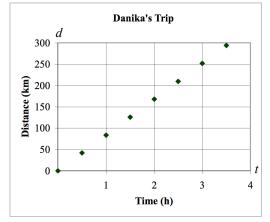

Chapter 5 Answers

Get Set, pages 81-82

1. a) none of these	b) always decreasing
c) always increasing	d) constant
2.	

x	у	First	Second
-3	-15	Differences	Differences
-2	-12	3	4
		7	-6
-1	-5	1	Ũ
0	-4		0
1	-3	1	6
	4	7	_4
2	4	3	
3	7		


5.1 Linear Models, pages 83–85 Warm-Up **1. a)** 7 **b)** 12

FFCM12 Chapter 5 Practice and Homework Book Answers

2. a) 5x - 11 **b)** $4x^2 - 12x + 6y$ **3.** (-2, -5) **4.** 10.5 cm **5.** $\frac{2}{3}$ **6.** 893 cm² **7.** right isosceles triangle **8.** a) 1000 b) 64 000

Practise

1. a) linear	b) non-linear
2. a) decreasing	d) increasing
3. a) \$9.65/h	b) \$106.15
4. a)	

c) non-linear

d) linear

The points form a straight line with a positive slope.

b) constant **c**) 84 km/h

5. Answers may vary. For example:

a) Gross earnings compared to hours worked.

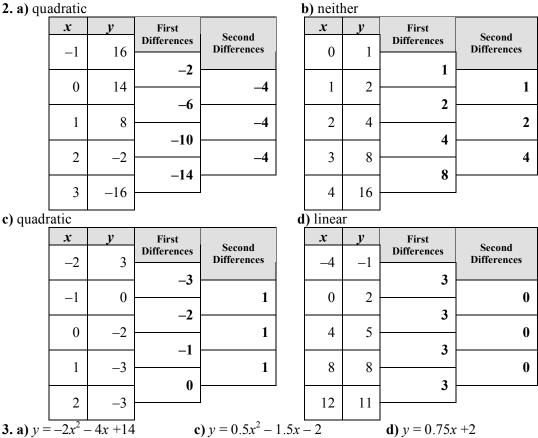
b) The volume of water in a bathtub (drain plugged, water off) compared to time.

c) Fuel remaining compared to time spent travelling.

6. a) As the number of days increases, the area left to be harvested decreases by a constant amount.

b) approximately 1100 acres c) 92 acres d) acres/day

e) Constant. Walter has 92 fewer acres to harvest after each day.


f) approximately 16 days

5.2 Quadratic Models, pages 86-88

Warm-Up 1. a) 22 b) -6 2. $6x^2 - 3x + 26$ 3. a) quadratic b) linear 4. 328 cm² 5. $\frac{3}{26}$ 6. Joe: E = 10.25h; Adriana: E = 150 + 4.65h7. D 8. The lines are parallel. The first differences are 2 for both lines.

Practise

1. a) quadratic b) linear

4. No. The *x*-values do not change by a constant amount.

5. a) As the ticket price increases, revenue increases to a maximum then decreases.

b) i) approximately \$20 500 ii) approximately \$19 100

c) Increasing for ticket prices less than \$15 and decreasing for ticket prices greater than \$15.

6. a) A quadratic model fits the data l	best.
---	-------

	Edge Length (cm)	Surface Area (m ²)	First Differences	Second
	15	0.135	First Differences	Differences
	15	0.155	0.405	Differences
	30	0.540		0.27
			0.675	
	45	1.215		0.27
	60	2 160	0.945	0.27
	60	2.160	1.215	0.27
	75	3.375	1.215	0.27
			1.485	
	90	4.860		
b) i	ncreasing c	$y = 0.0006x^2$	d) 6.615 cm^2	

5.3 Exponential Models, pages 89–91

Warm-Up1. a) -27b) 10 000c) -25d) 162. a) $2(x^2 + 3y)$ b) $7x(x^2 - 2x + 3)$ d) 163. a) x-intercepts: (4, 0), (8, 0); y-intercept: (0, 32)b) (6, -4); minimum:FFCM12 Chapter 5 Practice and Homework Book Answers

4. 2 cm

5. mean: 33.06; median: 30; mode: 24, 30

6. 6 kg of the \$16/kg tea; 4 kg of the \$20/kg tea

7. the axis of symmetry

8.
$$y = -\frac{1}{2}(x-4)^2 + 2$$

Practise

1. a) 512 grains of rice

b) The number of grains doubles each time, which is like repeatedly multiplying by two.

2. a) Yes. Each term is ten times the previous term.

b) No. Each term is three more than the previous term.

c) Yes. Each term is double the previous term.

3. a) exponential

<i>x</i>	у	First Differences	Second	Ratios
-3	-64		Differences	1
-2	-16	48	-36	4
		12		1
-1	-4	12	9	4
		3		1
0	-1			4
	-	3	4	1
1	_1	4		4
1	4	3	16	1
2	_1	16		$\overline{4}$
2	16		-	

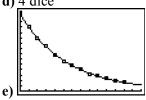
b) linear

x -2	<i>y</i>	First Differences	Second Differences	Ratios
	6.0	-1.1		0.8167
-1	4.9	-1.1	0	0.7755
0	3.8	-1.1	0	0.7105
1	2.7	-1.1	0	0.5926
2	1.6		0	
3	0.5	-1.1		0.3125

4. a) As time increases, the value of the vehicle decreases at a decreasing rate.

b) approximately \$3600 c) dollars/year

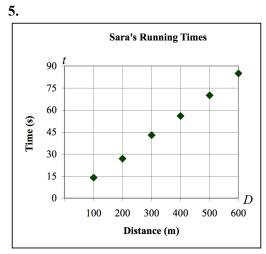
d) Decreasing. The graph becomes less steep.


_	``
•	9 I
J •	aj

Toss	Dice Remaining	First	Second	Ratios
0	72	Differences	Differences	itati05
		-11		0.8472
1	61	-11	0	0.8197
2	50	-11	3	0.0197
		-8		0.8400
3	42	0	0	0.9005
4	34	-8	2	0.8095
		-6		0.8235
5	28	4	2	0.9571
6	24	-4	0	0.8571
		-4		0.8333
7	20		0	0.0000
8	16	-4	2	0.8000
	10	-2	_	0.8750
9	14		-1	0.0==1
10	12	-3	1	0.8571
10	12	-2	*	0.8333
11	10		0	
12	8	-2		0.8000
12	0			

b) Exponential. Ratios are all approximately 0.8.

c) $y = 71.59(0.8338)^x$


d) <u>4 dice</u>

Xmin = 0, Xmax = 14, Xscl = 1, Ymin = 0, Ymax = 75, Yscl = 5

5.4 Analyse Graphical Models, pages 92–95 Warm-Up

1. a)
$$\frac{17}{24}$$
 b) $\frac{3}{10}$ c) $\frac{1}{6}$
2. a) $(x-7)(x+5)$ b) $9(x+1)(x+2)$
3. $x = 1$
4. pentagon, octagon, decagon

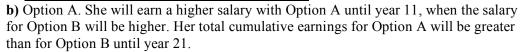
6. 80 km/h: 160 km; 100 km/h: 300 km **7.** B **8. a)** 13.81 s **b)** 600 g

Practise

1. a) C

2. C 3. a)

) Year	Town X	Town Y
	Population	Population
0	90 000	4 000
1	115 000	8 000
2	140 000	16 000
3	165 000	32 000
4	190 000	64 000
5	215 000	128 000

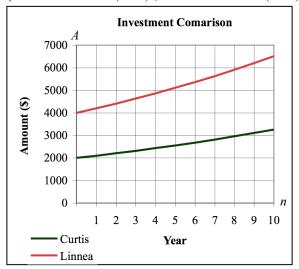

b) B

b) Town X: $P = 90\ 000 + 25\ 000t$; Town Y: $P = 4000(2)^x$

c) year 6

4. a)

Year	Option A	Option B
	Salary (\$)	Salary (\$)
0	48 000	45 000
1	49 000	46 125
2	50 000	47 278
3	51 000	48 460
4	52 000	49 672
5	53 000	50 913
6	54 000	52 186
7	55 000	53 491

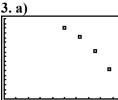

c) A

Curtis						
Year	Amount (\$)	First Differences	Second	Ratios		
0	2000.00	100.00	Differences	1.05		
1	2100.00		5.00			
2	2205.00	105.00	5.25	1.05		
3	2315.25	110.25	5.50	1.05		
3	2313.25	115.75	5.50	1.05		
4	2431.00	121 56	5.81	1.05		
5	2552.56	121.56		1.05		

Linnea					
Year	Amount (\$)	First Differences	Second	Ratios	
0	4000.00	200.00	Differences	1.05	
1	4200.00	200.00	10.00	1.05	
2	4410.00	210.00	10.50	1.05	
2	4410.00	220.50	10.50	1.05	
3	4630.50		11.00		
4	4862.00	231.50	11.63	1.05	
		243.13		1.05	
5	5105.13				

b) dollars/year

c) Curtis: $A = 2000(1.05)^n$; Linnea: $A = 4000(1.05)^n$

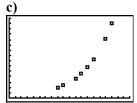


d) The ratio increases. The amount of Linnea's investment is increasing at a faster rate.6. Yes. Both accounts would increase at a constant rate of 1.05, so the ratio would remain constant.

5.5 Select a Mathematical Model, pages 96–99 Warm-Up 1. a) $\frac{41}{50}$ b) $\frac{7}{20}$ c) $\frac{9}{16}$ 2. a) (3x + 1)(3x - 1) b) $(2x + 1)^2$ 3. a) $V = \frac{3}{2}A$ b) 21 V4. 42° 5. a) 28 students b) 9 students 6. $h = -0.003d^2 + 0.5d$ 7. vertex 8. after 10 years

Practise

1. a) exponential b) exponential c) quadratic
2. a) Linear. The rate of change appears to be constant and positive.
b) No. There is not enough data.


Xmin = 0, Xmax = 20, Xscl = 2, Ymin = 0, Ymax = 850, Yscl = 50 **b**) Quadratic. The rate of change is increasing. **c**) $y = -4x^2 + 49.75x + 662.90$

Xmin = 0, Xmax = 20, Xscl = 2, Ymin = 0, Ymax = 850, Yscl = 50 d) x = 57.914. a)

<i>x</i>	y	First Differences	Second	Ratios
2.2	11.2	2.8	Differences	1.25
2.4	14.0		0.6	
2.6	17.4	3.4	0.9	1.24
2.0	17.4	4.3	0.9	1.25
2.8	21.7]	

b) Yes. Exponential. First and second differences are not constant but ratios are all approximately 1.25.

Xmin = 0, Xmax = 4, Xscl = 0.2, Ymin = 0, Ymax = 45, Yscl = 3

FFCM12 Chapter 5 Practice and Homework Book Answers

d) exponential
e)
$$y = (3)^x$$

5. a)

Xmin = 0, Xmax = 10, Xscl = 1, Ymin = 40 000, Ymax = 95 000, Yscl = 5000
b) As the year increases, the value increases; the rate appears to be increasing
c) exponential

Year	Average Value (\$)	First Differences	Second	Ratios
1971	42 000		Differences	1 01 42
1973	51 000	9 000	3000	1.2143
1975	63 000	12 000	2000	1.2353
		14 000		1.2222
1977	77 000	16 000	2000	1.2078
1979	93 000		J	

d) linear: V = 6400t - 12574800, $r^2 = 0.9888$

quadratic: $V = 285.71t^2 - 1\ 122\ 171t + 1\ 101\ 887\ 200, r^2 = 0.9999$ exponential: $V = 8.81 \times 10^{-82}(1.1053)^t, r^2 = 0.9997$

Xmin = 0, Xmax = 90, Xscl = 15, Ymin = 0, Ymax = 400 000, Yscl = 5000 f) i) linear: -158 800; quadratic: 188 914; exponential: 1886 ii) linear: 289 200; quadratic: 636 914; exponential: 2 081 879

g) None of the models work from 1930 to 2020.

Chapter 5 Review, pages 100–102

1. a) A b) C, E c) B, D d) km/h **2.** a)

•)			
x	у	First	Second
-1	-0.4	Differences	Second Differences
-1	-0.4	1.2	Differences
1	0.8	1.4	1.6
1	0.0	2.8	1.0
3	3.6	2.0	1.6
5	5.0	4.4	1.0
5	8.0		1.6
5	0.0	6	1.0
7	14.0		1.6
,	14.0	7.6	1.0
9	21.6		
	-1.0		

b) Quadratic. Second differences are constant.

3. a) approximately 375 m b) approximately 10 s c) m/s

d) Increasing from 0 s to 10 s and then decreasing.

4. a)

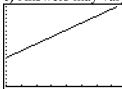
Year	Percent	First	Second	Ratios
	Remaining	Differences	Differences	
0	100.0			
		-11.3		0.8870
5	88.7		1.3	
		-10.0		0.8873
10	78.7		1.2	
		-8.8		0.8882
15	69.9		0.9	
		-7.9		0.8870
20	62.0		0.9	
		-7.0		0.8871
25	55.0		0.8	
		-6.2		0.8873
30	48.8			

b) Exponential. Ratios are all approximately 0.887.

c) $y = 99.99(0.9764)^x$ **d)** approximately 29 years

5. a)

Time	Amount in	Amount in
(years)	Account A (\$)	Account B (\$)
0	4000.00	4000.00
1	4168.00	4152.00
2	4336.00	4309.80
3	4504.00	4473.50
4	4672.00	4643.50
5	4840.00	4820.00
6	5008.00	5003.16
7	5176.00	5193.28


b) It depends on how long he is investing the money. If he is investing it for less than seven years, Account A will earn more interest. If he is investing it for seven years or more, Account B will earn more interest.

6.	a)
υ.	a,

Year	Average Amount (\$)	First Differences	Second	Ratios
2000	6214.00	Differences	Differences	
2001	6648.98	434.98	-0.04	1.07
2001	0048.98	434.94	-0.04	1.07
2002	7083.92	424.07	0.03	1.07
2003	7518.89	434.97	0.04	1.06
• • • • •		435.01		1.06
2004	7953.90		1	

b) Answers may vary. For example: Linear. First differences are approximately equal. Second differences are close to zero. The *r*-value for the linear model is closer to 1 than for the exponential or quadratic models.

c) Answers may vary. For example: y = 434.97x - 863728

Xmin = 0, Xmax = 16, Xscl = 2, Ymin = 0, Ymax = 10 000, Yscl = 500 d) Answers may vary. For example: i) \$4039.14 ii) \$10 563.71