

Section 5.3 Exponential Models

- 1. The population of Negliville has been decreasing by 10% per year. If the population of Negliville is 11 000 now, what will it be after one year? after two years?
- **2.** Refer to question 1. Explain why the decreasing population can be modelled with an exponential relation.
- **3.** Determine if each number sequence represents exponential growth. Justify your answer.
 - **a)** 12, 24, 36, 48
 - **b)** 3, 9, 27, 81
 - **c)** 6, 13, 21, 30
- 4. A weather balloon was launched and monitored by a meteorologist. He compared the atmospheric pressure at different heights with the standard atmosphere (atm), the atmospheric pressure at the Earth's surface. Then, he plotted the points and drew a curve of best fit to show the trend in the atmospheric pressure as the weather balloon rose.

- a) Describe the relationship between the atmospheric pressure and the height.
- **b)** Use the graph to estimate the atmospheric pressure at a height of
 - i) 2 km
 - **ii)** 4 km
 - iii) 6 km
- c) Use your answers to part b) to calculate the ratios.
- **d)** What happens to the atmospheric pressure after every 2-km increase in height?
- e) Consider the rate of change of the atmospheric pressure with respect to the height. What are suitable units for this rate of change?
- **f)** Is the rate of change of atmospheric pressure with respect to the height increasing, constant, or decreasing? Justify your answer.
- **5.** Lacey bought a high-end camcorder five years ago. The yearly resale value of the camcorder is shown in the table.

Year	Resale Value of Camcorder (\$)	
0	4800.00	
1	3840.00	
2	3072.00	
3	2457.60	
4	1966.08	
5	1572.86	

- a) Calculate the first and second differences. Is the relationship between resale value and time linear? quadratic? Explain how you know.
- **b)** Calculate the ratios. Is the relation exponential? Explain how you know.
- c) Draw a graph of the data. Can the graph be used to determine if the relation is linear? quadratic? Justify your answer.

Date:

В	Μ	5-	-12	
(ba	ae	2)	

- d) Compare the table and the graph. Does the rate of change of resale value with respect to time appear to be increasing, constant, or decreasing? Justify your answer.
- e) What are suitable units for the rate of change of resale value with respect to year?
- 6. Tyson plans to buy a new condominium. His real estate agent predicts the value of the condominium will increase over time. She made a table relating the value of the condominium to its age.

	e	
Age	Value of	
(years)	Condominium (\$)	
0	320 000	
1	328 000	
2	336 200	
3	344 605	
4	353 220	
5	362 051	

- a) Calculate the first and second differences. Does the relationship between value and time appear to be linear? quadratic? Explain how you know.
- b) Calculate the ratios. Can the data be modelled using an exponential relation? Justify your answer.
- c) Use technology to find the equation of best fit for an exponential model.
- **d)** Use the equation from part c) to predict the value of the condominium when it is ten years old.
- e) Sketch a graph of the data.

 Radon-222 (Rn-222) is an element that results from the decay of Radium-226. It is a dangerous radioactive gas that sometimes accumulates in basements. A sample of 500 micrograms (μg) of Rn-222 is collected in a lab for study. The table shows the mass of Rn-222 remaining, in micrograms, over five days.

Days	Mass Remaining (µg)
0	500
1	417
2	347
3	289
4	241
5	201

- a) Calculate the first and second differences. Does the relationship between mass remaining and time appear to be linear? quadratic? Explain how you know.
- b) Calculate the ratios. Can the data be modelled using an exponential relation? Give a reason for your answer.
- c) Use technology to find the equation of best fit for an exponential model.
- **d)** Use the equation from part c) to predict the mass of Rn-222 remaining after seven days.
- e) Sketch a graph of the data.

