

Prerequisite Skills

Proportional Thinking

- 1. How many weeks are in each time period?
 - a) 2 months
 - **b)** 3 years
 - **c)** 10 years
 - **d**) $9\frac{1}{4}$ years
- 2. How many days are in each time period?
 - a) 3 weeks
 - **b)** 2.5 months
 - c) 4 years $\frac{1}{1}$
 - **d**) $10\frac{1}{5}$ years
- 3. Depositing \$25.50 per week means depositing how much in each time period?a) 3 weeks
 - **b)** $7\frac{1}{2}$ months **c)** 3 years **d)** $4\frac{1}{6}$ years
- **4.** Earning \$56 000 in one year means earning an average of how much in each time period?
 - a) 2 months
 - **b)** 3 weeks
 - **c)** 1 day

5. How many payments are made in $1\frac{1}{2}$ years

for each payment frequency?

- a) semi-annually
- **b**) bi-monthly
- c) bi-weekly
- **d**) quarterly

Compound Interest

6. For each annual rate, *r*, determine *i*, the interest rate per compounding period. Round answers to four decimal places, where necessary.

	r (%)	Compounding Frequency
a)	5	monthly
b)	12.75	quarterly
c)	-1.25	weekly
d)	2.75	semi-annually
e)	0.45	daily
f)	21.65	annually

- 7. Determine *n*, the number of compounding periods, for each situation.
 - a) semi-annual compounding for five years
 - **b**) quarterly compounding for three years
 - c) monthly compounding for four years
 - d) daily compounding for seven months
 - e) daily compounding for one year
 - f) monthly compounding for 25 years

Work with Exponents

8. Complete each table.

a)			
x	$y = 3^x$	First	Common
0		Differences	Ratio
Ŭ			
1			
2			
3			
4			
~			
5			

b)	x	$y = 0.25^{x}$	First	Common
	0		Differences	Ratio
	1			
	2			
	3			
	4			
	5			

9. Without calculating, predict whether each exponential expression will give a value greater than or less than the initial value.

	Initial Value (\$)	Exponential Expression
a)	150	$150(1.001)^{-1}$
b)	3 375	$3375(0.065)^2$
c)	10 256	$10\ 256(1.0089)^{-4}$
d)	2 299	$2\ 299(1.001\ 32)^{25}$
e)	89	$89\left(\frac{1}{6}\right)^6$
f)	75 000	$75\ 000(0.55)^{-3}$

10. Calculate the value of each exponential expression in question 9. Round your answer to four decimal places.

- 11. Determine the future value, FV, of each amount using the formula $FV = PV(1 + i)^n$, where PV is the amount of the investment, *i* is the interest rate per compounding period, and *n* is the number of compounding periods.
 - a) \$500 is invested at 2.25% per year, compounded annually, for seven years.
 - **b**) \$4500 is invested at 3.75% per year, compounded quarterly, for three years.
 - c) \$25 500 is invested at 2.75% per year, compounded monthly, for two years.
- **12.** Complete each table.

a) ¹	
x	$y = 750 + 750(0.25)^x$
0	
1	
2	
3	
4	
5	
b)	
x	$y = 750(1.25)^{x}$
0	
1	
2	
3	
4	
5	

13. Use graphing technology to graph each relation from question 11.

