BLM 10-3

Section 10.1 Extra Practice

- **1.** Calculate the measure of $\angle ABC$ and $\angle AEC$. Explain how you got your answers.
 - **a)** $\angle ADC$ is a(n) ______ angle. *(inscribed or central)*

 $\angle ABC \text{ and } \angle AEC \text{ are } _$ angles. *(inscribed or central)*

Inscribed angles are ______ the size of central angles.

 $\angle ABC$ and $\angle AEC = \angle ADC \div 2$

Ν	а	m	ie	:
	~	•••	· •	۰.

BLM 10-3 (continued)

R

- **2.** Calculate the length of chord BC in each of the following.
 - **a)** \angle BDC is a ______ angle that measures _____°.

Since BC is the diameter and central angle, $\angle BAC$ is the

_____ angle that measures ______°.

Use the Pythagorean relationship to find the length of BC.

 $AB^2 + AC^2 = BC^2$

Copyright © 2010, McGraw-Hill Ryerson ISBN: 978–0–07–000219–7

Namo	
name	

 Δ ACD is a ______ triangle, so you can use the Pythagorean relationship to find the length of AD.

 $CD^2 + AC^2 = AD^2$

