Section 2.4 Extra Practice

- 1. Estimate the number that has the given square root. Then, calculate.
 - **a)** 4.1

Estimate:

$$4^2 =$$

$$5^2 =$$

b) 11.9

Estimate:

$$11^2 =$$

$$12^2 =$$

c) 0.75

Estimate:

$$0.7^2 =$$

$$0.8^2 =$$

$$0.75^2 \approx _{----}$$

Calculate:

$$4.1^2 =$$

Calculate:

$$11.9^2 =$$

Calculate:

$$0.75^2 =$$

- **2.** Estimate the area of each square, given its side length. Remember to include the units in each summary statement. Then, calculate. $A = s^2$
 - a) 2.1 cm

Estimate:

$$3^2 =$$

b) 8.9 m

Estimate:

$$(8 \text{ m})^2 = \underline{}$$

$$(9 \text{ m})^2 = \underline{}$$

$$(8.9 \text{ m})^2 \approx$$

Calculate:

$$2.1^2 =$$

Calculate:

$$(8.9 \text{ m})^2 = \underline{}$$

3. Determine whether each rational number is a perfect square. If it is a perfect square, write the product as an expression of 2 equal rational factors.

Example: 49 Circle (YES) or NO. $49 = 7 \times 7$

- a) 25 Circle YES or NO. _____
- **b)** $\frac{1}{4}$ Circle YES or NO.
- c) $\frac{25}{9}$ Circle YES or NO.
- d) 0.81 Circle YES or NO. _____
- **e)** $\frac{1}{10}$ Circle YES or NO.

BLM 2-9 (continued)

- **4.** Find the square root of each number.
 - **a)** $\sqrt{256}$

b) $\sqrt{3.61}$

- **5.** Calculate the side length of each square from its area. Show your work.
 - **a)** 144 cm²

$$A = s^2$$

$$144 = s^2$$

$$\sqrt{144} = s$$

c) 0.09 mm²

d) 0.36 km²

6. Estimate the square root to the specified number of decimal places. Then, calculate.

a) $\sqrt{83}$ to the nearest tenth

Estimate:

Calculate:

b) $\sqrt{0.56}$ to the nearest hundredth

Estimate:

Calculate:

7. A square lot has an area of 0.5 ha. What are the lot's dimensions to the nearest metre? Show your work. **Hint:** $1 \text{ ha} = 10 000 \text{ m}^2$

$$0.5 \text{ ha} = \underline{\qquad} \text{m}^2$$

$$A = s^2$$
 Solve for s.