Section 3.4 Extra Practice

1. What is the volume of a cube with a side length of 4 cm? Show your work.

 $V = s^3$

2. A colony of bacteria triples every hour. There are 30 bacteria now. How many will there be after each amount of time? Show your work.

a) 1 h	b) 3 h
# of bacteria after 1 h = $30(3)^{1}$	# of bacteria after 3 h = 30(3) $^{\Box}$
=	=

d) *n* h

c) 5 h

3. What is the surface area of a cube with a side length of 6 cm? Show your work.

$$SA = 6s^2$$

Name:	Date:

BLM 3-7

(continued)

4. Find the side length of the square attached to the hypotenuse in the diagram. Show your work.

5. The diagram shows a circle inscribed in a square with a side length of 16 cm. What is the area of the shaded region? Round your answer to the nearest hundredth of a square centimetre. Show your work.

$$A = s^2, A = \pi r^2$$

NI:	a	m	P	•
1.0	a		E	•

BLM 3-7

(continued)

6. A formula used to calculate the distance a skydiver falls is $d = 4.9t^2$. *d* is the total distance, in metres.

t is the time, in seconds.

Calculate the distance the skydiver falls in the following times. Show your work. \checkmark

Substitute into the formula. **b)** 4 s **a)** 2 s

 7. A cylinder has a radius of 7 cm and a height of 12 cm. Calculate its surface area. Round your answer to the nearest hundredth of a square centimetre. Show your work.

$$SA = 2\pi r^2 + 2\pi rh$$

