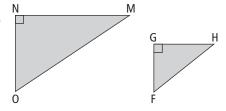

Section 4.3 Extra Practice

1. List the corresponding angles and the corresponding sides in each pair of triangles.

a)

 \angle D corresponds to _____.

 \angle E corresponds to _____.

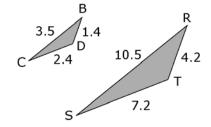

 \angle F corresponds to _____.

DE corresponds to _____.

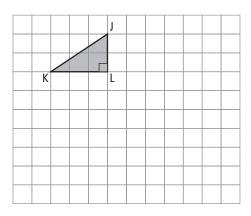
EF corresponds to _____.

DF corresponds to _____.

b)



2. Compare the corresponding sides. Are the triangles similar? Show your work.



$\frac{RT}{BD} = \frac{1}{2}$	

3. a) Use a scale factor of 2 to draw \triangle WXY so that it is similar to \triangle JKL.

b) List the corresponding angles and the corresponding sides.

 \angle J corresponds to \angle _____.

JK corresponds to _____.

 \angle K corresponds to \angle _____.

JL corresponds to _____.

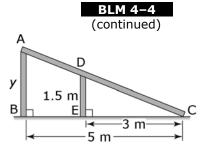
 \angle L corresponds to \angle _____.

KL corresponds to _____.

4. \triangle MNO is similar to \triangle MPR.

Calculate the missing length, x, to the nearest tenth.

Hint: Use the scale factor to solve for the missing length.


= ____

Find x.

5. The two vertical supports on a ramp form 2 triangles. \triangle ABC is similar to \triangle DEC.

b) Write the corresponding sides and angles.

c) Find the scale factor.

d) Find the height of the ramp by calculating the missing length, *y*. Show your work.