Answers

Get Ready, pages 116–117

- **1. a)** 25 cm^2 **b)** 81 m^2
- **2.** a) 8 mm b) 6 cm
- **3.** 22 m
- **4. a)** 120 cm³ **b)** 18 cm³

Math Link

1. circle, cube, rectangular prism, square, cylinder

- **2.** To find the area of the square, multiply the length by the width; $A = s^2$.
- **3.** Area: πr^2 ; Circumference: $C = \pi d$, $C = 2\pi r$
- **4.** Answers may vary. Example: **a)** *SA* of rectangular prism = area of top and bottom + area of 2 ends + area of 2 sides; *SA* of cylinder = $2\pi r + 2\pi rh$; *SA* of cube = $6s^2$

b) V of rectangular prism = lwh; V of cylinder = $\pi r^2 h$; V of cube = s^3

5. Answers will vary. Example: I would use a rectangular prism and a cylinder because they are similar sizes and would balance each other.

3.1 Warm Up, page 119

1. a) 8 **b)** 25 **c)** 1 **d)** 27

2. a) +9 b) -16 c) +64 d) -49 e) -27 f) +16

3. a) 25 m² **b)** 144 cm²

4. a) 64 m³ b) 8 cm³

3.1 Using Exponents to Describe Numbers, pages 120–127

- Working Example 1: Show You Know
- **a)** 4³; 64 **b)** 10⁴; 10 000

Working Example 2: Show You Know

Power	Repeated Multiplication	Evaluate		
a) 6 ²	6 × 6	36		
b) 3 ⁴	$3 \times 3 \times 3 \times 3$	81		
c) 5^3	$5 \times 5 \times 5$	125		

Working Example 3: Show You Know

a) Answers will vary. Example: In $(-5)^2$, the negative sign is included in the repeated multiplication. In -5^2 , the negative sign is not included.

b) Answers will vary. Example: They are both to the power 2.

c) i) 9 **ii)** -243 **iii)** -9 **iv)** -243

Communicate the Ideas

1. Answers will vary. Example: a) A power is a shorter form. b) 2^3 is shorter than $2 \times 2 \times 2$.

2. a) YES **b)** $(-2)^4 = 16; (-2)^3 = -8$

Practise

3. a) 7² **b)** 10⁶

4. a) Base: 1; Exponent: 4 b) Base: 13; Exponent: 1 **5.** a) 243 b) 1

6.

Repeated Multiplication	Exponential Form	Value
a) $6 \times 6 \times 6$	6 ³	216
b) $3 \times 3 \times 3 \times 3$	34	81
c) 7 × 7	7^{2}	49
d) 11 × 11	11 ²	121
e) $2 \times 2 \times 2$	2^{3}	8

7. a) 81 **b)** -125 **c)** -1 **d)** 27 **8.** NO; $(-2)^4 = 16; -2^4 = -16$

Apply

9. Repeated multiplication: $3 \times 3 \times 3$ Exponential: 3^3

10. a)

End of Month	Body Length	Power
June	$1 \times 2 = 2$	2 ¹
July	$2 \times 2 = 4$	2 ²
August	$4 \times 2 = 8$	2 ³
September	8 × 2 = 16	2^{4}
October	$16 \times 2 = 32$	25
November	$32 \times 2 = 64$	2^{6}
December	64 × 2 = 128	27
January	$128 \times 2 = 256$	2^{8}
February	$256 \times 2 = 512$	29
March	$512 \times 2 = 1024$	210

b) 32 cm; 2⁵ **c)** 6

11. 1^{13} , 2^5 , 7^2 , 4^3 , 3^4

Math Link

a) $SA = 6 \times s \times s; V = \pi \times r \times r \times h$

b) cube; volume; cylinder

c) Answers will vary. Example: cube; $V = s^3$; $V = s \times s \times s$; circle; $A = \pi r^2$; $A = \pi \times r \times r$

3.2 Warm Up, page 128

1. a) 6^4 **b)** 3^7 **c)** $(-4)^5$ **d)** $(-9)^2$

2. a) 81 b) -8 c) -1 d) -4 e) -16 f) (-25)

3.

Repeated Multiplication	Exponential Form	Value
a) $5 \times 5 \times 5 \times 5$	5^{4}	625
b) $(-3) \times (-3) \times (-3)$	$(-3)^{3}$	-27
c) $5 \times 5 \text{ or } (-5) \times (-5)$	$5^2 or (-5)^2$	25
d) (-7) × (-7)	$(-7)^2$	49
e) $(-10) \times (-10) \times (-10) \times (-10)$	$(-10)^4$	10 000

4. $(-3)^3$, -2^4 , 1^{10} , $(-4)^2$

3.2 Exponent Laws, pages 129-140

Working Example 1: Show You Know

a)
$$4^8 = 65\ 536\$$
b) $(-5)^5 = -3125$

Working Example 2: Show You Know

a) $2^2 = 4$ **b)** $(-3)^3 = -27$

Working Example 3: Show You Know

a) $3^6 = 729$ **b)** $5^2 \times 4^2 = 400$ **c)** $\frac{2^5}{5^5} = \frac{32}{3125}$

Working Example 4: Show You Know

a) 1 b) -1 c) -1 d) 1

Communicate the Ideas

- 1. Answers will vary. Example: You can simplify this power by multiplying the 2 exponents.
- **2.** Answers will vary. Example: The exponent applies to both numbers in the brackets.
- **3.** NO; the negative is not in brackets with the 6 so it is not raised to the zero power.

Practise

4. a) $4^5 = 1024$ b) $5^4 = 625$ c) $8^3 = 512$ d) $(-3)^4 = 81$ e) $(-2)^7 = -128$

5. a) $4^3 \times 4^2 = 4^5$ b) $2^5 \times 2^2 = 2^7$

6. a)
$$5^2 = 25$$
 b) $(-4)^2 = 16$ c) $7^3 = 343$

7. a) $6^4 \div 6^3 = 6^1$ b) $5^7 \div 5^1 = 5^6$ 8. a) $3^6 = 729$ b) $5^4 = 625$ c) -4^4 or $(-4)^4 = -256$ 9. a) $5^2 \times (-4)^2 = 400$ b) $3^2 \times 4^2 = 144$ c) $2^4 \times (-1)^4 = 16$

10.
$$\frac{5^3}{6^3} = \frac{125}{216}$$

Apply

11. a) $7^{5}(3)$ **b)** Jenny should have added the exponents instead of multiplying. **12.** 3^{11}

3.3 Warm Up, page 141

1.

Power	Repeated Multiplication	Value	
a) 3 ³	$3 \times 3 \times 3$	27	
b) (-10) ⁵	$(-10) \times (-10) \times (-10) \times (-10) \times (-10)$	-100 000	
c) -4^2	$-(4 \times 4)$	-16	
d) -(-9 ²)	$-[(-9) \times (-9)]$	-81	

2. a) $2^6 = 64$ b) $(-4)^3 = -64$ c) $5^0 = 1$ d) $(-9)^2 = 81$

3. a) 14 b) -35 c) 9 d) -13

3.3 Order of Operations, pages 142–148

Working Example 1: Show You Know

a) 36 **b)** -750 **c)** -49 **d)** -8

Working Example 2: Show You Know

a) 0 b) 389

Communicate the Ideas

1. Step 1: Subtract 5 - 3. Step 2: Apply the exponents. Step 3: Add.

2. a) Maria multiplied 8 × 5 before she applied the exponent.
b) 8 × 125 = 1000

Practise

3. a) $4(2^4) = 64$ b) $3(-2)^3 = -24$ c) $7(10)^5 = 700\ 000$ d) $-1(9^2) = -81$ **4.** a) 128 b) 63 c) -250 d) -12**5.** a) **C4** × **2** y* **5** = 128

b) C 5 + X 4 𝒴 3 = −320

6. a) 18 b) 70 c) 1 d) -71 e) 1 f) 44

Apply

7. a) $3(2)^3 = 24$; $2(3)^2 = 18$; $3(2)^3$ is larger. b) $(2+4)^2 = 36$; $2^2 + 4^2 = 20$; $(2+4)^2$ is larger.

8. a) Step 3 b) -27

9. a) $6^2 - 5^2$ b) The difference is 11 cm².

Math Link

Answers will vary. Example: **a**) height of cylinder = 2 cm; radius of cylinder = 2 cm; height of cube = 2 cm **b**) Cylinder: 50.24 cm²; Cube: 24 cm² **c**) CYLINDER; The cylinder needs 26.2 cm² more material. **d**) $2\pi r^2 + 2\pi rh + 6s^2$ **e**) The total area of material needed to make both shapes is 74.24 cm².

3.4 Warm Up, page 149

1. a) 120 cm² b) 1017.36 cm²

2. a) 384 cm² b) 1004.8 cm²

3. a) 11.7 cm b) 11.2 cm

3.4 Using Exponents to Solve Problems, pages 150–157

Working Example 1: Show You Know

a) The area of the square attached to the hypotenuse is 289 cm². **b)** The surface area of the cube is 54 cm². **c)** The area of the shaded region is 18 cm^2 .

Working Example 2: Show You Know

a) 150 **b)** 4050 **c)** 12 150 **d)** 50×3^n

Communicate the Ideas

1. a) $SA = 4\pi r^2$ b) coefficient: $4 \times \pi$ or 4×3.14 ; variable: *r*; exponent: 2 **Practise**

2. 216 cm³

- **3.** $14^2 = 196$; $6 \times 6^2 = 216$; The surface area of a cube with an edge length of 6 cm is larger.
- **4.** a) There will be 60 bacteria after 1 h. b) There will be 1620 bacteria after 4 h. c) There will be 20×3^n bacteria after *n* h.

Apply

5. Sara will need 864 cm².

6. a) The stopping distance is 37.5 m. b) C 0.75 × 50 × (1000 ÷1000)) 𝒴 2 = 37.5

- 7. a) the number of questionsb) the number of possible answers
- c) There are 1024 possible answers.

Math Link

a)

Side Length of Cube	Surface Area of 1 Cube	SurfaceArea of 5 Cubes
s = 3 cm	54 cm^2	270 cm^2
s = 4 cm	$96 \ cm^2$	480 cm^2
s = 5 cm	150 cm^2	750 cm^2

b) The surface of 5 cubes with a side length of 5 cm is 480 cm^2 greater than the surface area of 5 cubes with a side length of 3 cm.

Graphic Organizer, page 158

Answers will vary. Example:

Left side:

Repeated multiplication: $2^3 = 2 \times 2 \times 2$ Parts of a power: In 2^3 , 2 is the base and 3 is the exponent. Evaluate powers with a positive base: $2^3 = 8$ Evaluate powers with a negative base: $(-2)^3 = -8$ Product of a power: $4(2)^3 = 4 \times 8 = 32$

Order of operations:

 $9 + (-2)^{3} - 2(-6^{2})$ = 9 + (-8) - 2(-36) = 9 + (-8) + (72) = 1 + 72 = 73

Expression with a power: $4^2 + (-4^2) = 16 + (-16) = 0$ **Right side:**

Multiplying powers with the same base: $2^3 \times 2^2 = 2^{3+2} = 2^5 = 32$ Dividing powers with the same base: $2^3 \div 2^2 = 2^{3-2} = 2^1 = 2$ A power raised to an exponent: $(2^3)^2 = 2^3 \times 2 = 2^6 = 64$ A product raised to an exponent: $(2 \times 3)^2 = 2^2 \times 3^2 = 4 \times 9 = 36$

A quotient raised to an exponent:
$$\left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9}$$

An exponent to a power of 0: $2^0 = 1$ Formula to solve a problem: Find the area of a cube with an edge length of 2 cm. $A = 6s^2$ $A = 6(2)^2$ A = 6(4)A = 24Pattern to develop a formula:

Bacteria triple in number every hour. If there are 20 bacteria, how many will there be after 2 h?

- $\begin{array}{c} 20\times3^2\\=20\times9\end{array}$
- = 180

Chapter 3 Review, pages 159–162

1. coefficient 2. exponential form 3. base 4. power 5. exponent 6. a) 2^3 b) $(-3)^4$ 7. a) $4 \times 4 \times 4 \times 4 \times 4 \times 4$ b) $6 \times 6 \times 6 \times 6$ **c)** $(-5) \times (-5) \times (-5) \times (-5) \times (-5) \times (-5) \times (-5)$ d) $-(5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5)$ 8. $V = 4 \times 4 \times 4$; $V = 4^3$; 64 cm³ **9.** -3^4 , 9, 2^5 , 7^2 , 4^3 , **10. a)** $3^3 \times 3^2 = 3^5$ **b)** $\frac{4^2 \times 4^4}{4^3} = 4^3$ **11. a)** $[(-5) \times (-5)] \times [(-5) \times (-5) \times (-5) \times (-5) \times (-5)] = (-5)^7$ **b)** $(3 \times 3) \times (3 \times 3) \times (3 \times 3) \times (3 \times 3) = 3^8$ **12.** a) $6^3 \times 4^3$ b) $7^5 \times (-2)^5$ **13. a)** $\frac{4^2}{5^2}$ **b)** $\frac{2^4}{7^4}$ **14. a)** -16 **b)** 1 **c)** 81 **d)** 4 15. a) C (2+C-) $y^{*}2$ + (+C-2) $y^{*}3$ = -4 b) C (2 y^{x} 3) y^{x} 2 - 4 × 6 y^{x} 0 = 50 16. a) 51 b) 9 **17. a)** 88 × 8 **b)** 137 **18.** The surface area is 150 m^2 . 19. a) The pebble will fall 4.9 m in 1 s. b) The pebble will fall 78.4 m in 4 s.

Key Word Builder, page 163

1. power 2. base, exponent 3. evaluate 4. area, cube, formula 5. operations 6. volume, cylinder 7. laws 8. product 9. quotient 10. coefficient 11. expression, negative

Ô	Y	L	Т	Ν	D	Ε	R	R	Ε	Æ
0	P	E	R	Â	Т	Τ	0	Ν	S	X
E	R	$\overline{\mathbb{V}}$	0	L	U	Μ	E	Ρ	W	Р
F	0	E	C	υ	В	E	R	A	А	R
F	D	Т	E	М	D	Æ,	ſÂ)	М	LJ	E
T	U	υ	L	R	W	Æ	R	Ι	P	S
С	С	Q	U/	Ó	Æ	Ι	Ε	Ν	D	S
I I	Т	L	P	[F]	Œ	S	A)	B	Т	Π
E	V	A	Ĺ	Ŭ	Α	Т	Ē	C	Α	0
Ν	T	1	Œ	۷	Τ	Т	А	G	Ε	N
Т	0	N	Œ	Х	Ρ	0	Ν	Ε	Ν	T)

Repeated multiplication
Chapter 3 Practice Test, pages 164–165

1. C 2. B 3. C 4. D 5. A 6. B

- **7.** 3
- **8.** 5⁷

9. $\frac{4 \times 4 \times 4 \times 4 \times 4}{4 \times 4} = 64$

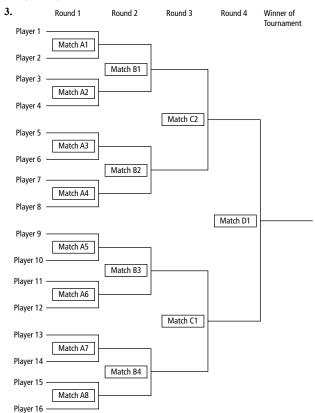
10. The volume of the cylinder is 180.9 cm^3 .

11. a) C (1 – 3) $y^{*}4 \div 4 = 4$

b) C (2 +) y* 0 + 4 17 y* 0 = 5

12. a) $32 \div (-8) + (8)$ b) 12

Math Link: Wrap It Up! page 166


Answers will vary.

b) NO. There are an even number of players, so there are no byes. **c)** 3

2. 16, match, 4

4. Answers will vary. Example: The best number of players would be a power of 2 so that no one receives a bye.

5. a) 512 b) 9