Answers

Get Ready, pages 290–291

1.	Time (s)	5	6	7
	Speed (km/h)	60	50	40
г				

Time (s)	Speed (km/h)
5	60
6	50
7	40

- **2.** YES. Answers will vary. Example: It is possible to read a temperature between whole minutes.
- **3.** NO. Answers will vary. Example: The values in the first column increase by a constant amount of 5. The values in the second column do not increase by a constant amount.

Math Link

1. a) 3 b) 6 c) YES. Answers will vary. Example: Time increases by a constant amount and speed decreases by a constant amount.

2. a)		y / 30€						
	<u>-</u>	25 -	\mathbf{A}					
	, m	20 -		\rightarrow		-		$\left \right $
	eed	-15 -		_	\mathbf{h}			\square
	- S	10 -				\land		\square
		-5-					\land	
		0	3	3 6	5 9	9 1	2 1	15 x
				Ti	me (min)	

b) TIME. Answers will vary. Example: The horizontal axis is labelled with the data in the first column of a table of values. **c)** SPEED. Answers will vary. Example: The vertical axis is labelled with the data in the second column of a table of values.

3. The speed of the tanker is 9 km/h.

4. a)	Speed, s (km/h)	10	8	6	4	2	0
	Time, t (min)	6.7	7.3	8	8.7	9.3	10

b) It will take 10 min for the tanker to stop.

6.1 Warm Up, page 294

1. Answers will vary. Examples: **a**) d **b**) r **c**) c **d**) a

2. a)
$$c = 20t$$
 b) $d = \frac{1}{2}s$ or $2d = s$

3. a) Pattern: 10; Equation: y = 10x b) Pattern: add 6 to the input; Equation: y = x + 6

4. a) 4 b) a = -3

a

6.1 Representing Patterns, pages 295–309 Working Example 1: Show You Know

)	Figure Number, <i>n</i>	Number of Circles, c
	1	1
	2	3
	3	5
	4	7

b)	Figure Number, <i>n</i>		n × 2		Number of Circles, c
	1	$\times 2 \rightarrow$	2	$-1 \rightarrow$	1
	2	$\times 2 \rightarrow$	4	$-l \rightarrow$	3
	3	$\times 2 \rightarrow$	6	$-l \rightarrow$	5
	4	$\times 2 \rightarrow$	8	$-1 \rightarrow$	7

c) c = 2n - 1 **d)** 141 **e)** Figure 42

Working Example 2: Show You Know

a)	Number of Tables, <i>t</i>	Number of People, <i>p</i>
	1	6
	2	10
	3	14
	4	18

Number of Tables, <i>t</i>		$t \times 4$		Number of People, <i>p</i>
1	$\times 4 \rightarrow$	4	$+2 \rightarrow$	6
2	$\times 4 \rightarrow$	8	$+2 \rightarrow$	10
3	$\times 4 \rightarrow$	12	$+2 \rightarrow$	14
4	$\times 2 \rightarrow$	16	$+2 \rightarrow$	18

Linear equation: p = 4t + 2

c) 6 tables Communicate the Ideas

1. Answers will vary. Example:

- Step 1: Create a table of values to show the pattern.
- Step 2: Add two columns to the table of values to help you figure out the pattern.
- Step 3: Write the pattern as an equation using the variables.
- **2.** a) The pattern starts at 1 and adds 2 each time. b) Answers will vary. Example: Continue the pattern until you get to the 9th term: 1, 3, 5, 7, 9, 11, 13, 15, 17.

Practise

b)

3. a)	Figure Number, <i>n</i>	Number of Circles, c
	1	5
	2	8
	3	11

b)	Figure Number, <i>n</i>		Number of Circles, c
	1	\times 3 + 2 \rightarrow	5
	2	\times 3 + 2 \rightarrow	8
	3	\times 3 + 2 \rightarrow	11

c) c = 3n + 2

4. a)	Figure Number, <i>n</i>	Number of Black Tiles, <i>b</i>
	1	8
	2	12
	3	16
	4	20
	5	24

b)	Figure Number, n 1 2 3 4 5	Number Black Tile $\times 4 + 4 \rightarrow$ $\times 4 + 4 \rightarrow$ 12 $\times 4 + 4 \rightarrow$ 16 $\times 4 + 4 \rightarrow$ 20 $\times 4 + 4 \rightarrow$ 24	of es, b	Math Link Answers will vary. Examples: a) Course 2:	Total Race Length: 15 km
c) <i>l</i> 5. a)	p = 4n + 4 d) 10	00 tiles e) Figure 43		Course 3:	Total Race Length: 18 km
b)	Figure 2 I P = 14 cm P Figure	Figure 3 = 18 cm $P = 22$ cm	r,	Course 4: 7 km	Total Race Length: 21 km
	Number, n 1 2 3 4	$\begin{array}{c c} & P \\ \hline \times 4 + 6 \rightarrow & 10 \\ \hline \times 4 + 6 \rightarrow & 14 \\ \hline \times 4 + 6 \rightarrow & 18 \\ \hline \times 4 + 6 \rightarrow & 22 \\ \hline \end{array}$			
c) / 6. a)	$\frac{1}{2} = 4n + 6 \text{ d} 52$ Term Numbe	r, Term Value, v -5 -8 -11		Course 5:	Total Race Length: 24 km
b)	4 5 Term Numbe <i>n</i> 1 2	$\begin{array}{c c} & -14 \\ \hline & -17 \end{array}$ er, $\begin{array}{c c} & & Te \\ \hline & \times (-3) - 2 \rightarrow \end{array}$ $\times (-3) - 2 \rightarrow \end{array}$	erm Value, v -5 -8	b) Answers will vary. Examples: Course Race Length Number (c) (r) 1 12 2 15	c) y 25
c) 1 7 a) 1	$\frac{3}{4}$ 5 y = -3n - 2 d)	$\begin{array}{c c} \times (-3) - 2 \rightarrow \\ \hline \end{array}$	-11 -14 -17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 2 3 4 5 x Course Number
	y = 3x + 15 b) y	y = /x + 1/		6.2 Warm Up, page 310	
8. a) s	, number of sea	ts; t, number of tables; s =	= 4t + 2 b) 22 people	1. A(0, 2) B(1, 3) C(2, 4) D(3, 5) E(4, 6)	
c)	Left Side R	Right Side		2. Estimates will vary. Example: A (2, 5) E	B(4, 11) C(6, 17) D(8, 23.5)
	22	4t + 2		3. a) at home b) 3 km away c) 0.8 km awa	ıy
	=	= 4(5) + 2		4. a) NO; Answers will vary. Example: You	u cannot have 1.2 people.
	=	= 20 + 2		b) TES, Alisweis will vary. Example. T	ou can nave 1.2 L of water.
d)]	Rob needs 7 tabl	les.		6.2 Interpreting Graphs, pages 311–320 Working Example 1: Show You Know)
9. a)	Number of			a) 10 km; (50, 10) b) 47 s; (47, 11) c) YES	S; Answers will vary. Example:
	T-shirts	Cost (\$)	_	A plane can be at an altitude that is not a w	hole number, such as 12.8 km.
	5	$0 \times 13 + 125 = 125$ $5 \times 15 + 125 = 200$		Working Example 2: Show You Know	
	10	275		a) EXTRAPOLATE; 5 b) INTERPOLATE vary. Example: Computers can have a value	E; 1.5 c) YES; Answers will e that is not a multiple of 100.
	15	350		such as \$628.	· · · · · · · · · · · · · · · · · · ·
	35	650		Communicate the Ideas	
b)	C, cost; <i>n</i> , numb	er of T-shirts; $C = 15n +$	125 c) It will cost \$5795 to 148 T-shirts for \$ 2345	1. a) GRAPH B b) Answers will vary. Exa	mple: You cannot buy half a
				 Answers will vary. Examples: a) (1.5, – because you are estimating a point on the extrapolation because you are estimating a 	3.5). This is interpolation e line. b) $(3, -5)$. This is a point beyond the end of the line.

Practise

- **3.** a) 14 km b) 7 h c) INTERPOLATE This is an interpolation because you are estimating a point between points on the line.
- **4.** a) 29 m b) 11.8 min c) EXTRAPOLATE This is extrapolation because you are estimating a point beyond the end of the line.
- **5.** a) 18 b) 2.8 c) EXTRAPOLATE This is extrapolation because you are estimating a point beyond the end of the line.

6. a) 14 b) 1.5 c) INTERPOLATE

7. a) d Sophie's Cycling Distance b) 31 km c) 3.5 h

Apply

9. a) YES; Answers will vary. Example: The submarine can be underwater for a fraction of a minute, and the graph shows a linear relationship.
b) 3.5 min c) 160 m

b) -4.5 °C c) 12 noon

10. a) YES; Answers will vary. Example: You can sell a number of programs between 700 and 1200 and you can also sell more than 2100 programs.
b) \$265 c) They need to sell 3500 programs.

11. a) 0.75 h **b)** 3.25 h

Math Link

a)	Number of Kedges, <i>k</i>	Distance, <i>d</i> (m)	Distance, <i>d</i> (km)
	1	650	$650 \div 1000 = 0.65$
	200	$200 \times 650 = 130\ 000$	130 000 ÷ 1000 = <i>130</i>
	400	$400 \times 650 = 195\ 000$	<i>260 000</i> ÷ <i>1000</i> = 260
	600	$600 \times 650 = 390\ 000$	<i>390 000</i> ÷ <i>1000</i> = <i>390</i>
	800	$800 \times 650 = 520\ 000$	$520\ 000 \div 1000 = 520$

b)

356 MHR • Chapter 6: Linear Relations

c) 1700 d) EXTRAPOLATE; Answers will vary. Example: It was beyond the 800 kedges distance of 520 km.

6.3 Warm Up, page 321

- **1.** Answers will vary. Example: The input (x) times 5 equals the output (y).
- 2. Answers will vary. Example: The *y*-value is always 8.

3. a)	x	у	(x, y)
	-2	-1	(-2, -1)
	-1	1	(-1, 1)
	0	3	(0, 3)
	1	5	(1, 5)
	2	7	(2, 7)

			• -	-			
			_4-	•			
_							
			-2-				
	_6 _	4	0		2	4 (5 x
			-2-				
			6	,			
			-0-				

y e

b)	x	У	(x, y)
	-2	12	(-2, 12)
	-1	9	(-1, 9)
	0	6	(0, 6)
	1	3	(1, 3)
	2	0	(2, 0)

6.3 Graphing Linear Relations, pages 322–339 Working Example 1: Show You Know

b) 11 **c)** x = 0.5

Working Example 2: Show You Know

a)		Pattern:	
	Time, <i>t</i> (s)	t(0.5) + 2	Distance, d (m)
	2	$\times 0.5 + 2 \rightarrow$	3
	4	$\times 0.5 + 2 \rightarrow$	4
	6	$\times 0.5 + 2 \rightarrow$	5
	8	$\times 0.5 + 2 \rightarrow$	6
	10	$\times 0.5 + 2 \rightarrow$	7

b) d = 0.5t + 2

Working Example 3: Show You Know

horizontal line. The other is a vertical line.

Pay, *p* (\$)

0

8.25

16.50

24.75

33.00

c) \$66.00 d) Answers will vary. Example: \$65.00; YES

-2

0

2

y

7

3

-1

B x

y

4

4

t	d
0	4
2	4
4	4
6	4
8	4

Communicate the Ideas

Time, *t* (h)

0

1

2

3

4

a)

Practise

3. a)

4. C

5. a)

x

-4

-2

0

2

4

x

0

2

v

-20

-10

0

10

20

b) d = 4 c) Answers will vary. Example: The output in the table of values all have a value of 4.

1. a) Answers will vary. Examples: y = 3x + 1. **b)** I would make a table of values to find the coordinate points. I would substitute values for x into

the equation and solve for y. Then, I would graph the points on a grid.

2. Answers will vary. Examples: **a**) y = 6; x = 15 **b**) One of the columns in

each tables of values is filled with the same number. c) One graph is a

b)

p

40

<u></u>

20

10

0

A x

Pay

lan's Earnings

3 4 5 t

iż

-2

0

2

Time Worked (h)

y

6.5

6

5.5

				m	L.		-	
					1			
				12-				
				8-				
				Ŭ				
				4				
				-				
								_
_	10	_	5	0		5	1	0 k
				1	7			

4

b) h = 6t **c)** 30 cm **d)** YES; Answers will vary. Example: Values exist beyond and between the points. However, a height or time value less than zero does not exist.

F

x

24

y = -4x;

Apply

8. a) 20 min b) 50 °C c) 5

9. a) 1350 m b) 11 min c) 90 m d) *a* = 90*t* e) The balloon is rising 90 m/min.

10. a)	Celcius, C (°C)	Fahrenheit, F (°F)
	-50	-58
	-20	-4
	10	50
	40	104
	70	158
	100	212
	130	266

<u>4</u> <u>4</u> <u>6</u> <u>4</u>

b) s r 0 4.5 1 1.5 2 -1.53 -4.5

Answers • MHR 357

b) 212°F **c**) It is crossing the vertical axis (*F*-axis). **d**) -40° **Math Link**

1. a) 10 right, 20 up; s = 2t + 14

	у. 70-			•			
_	60-		-				
(i /u	-50-						
E.	40 -						
bee	-30 -	-					
S	20-						
	10		<u> </u>				
	0	1	0 2	03	04	0 5	50 x
				Time	e (s)		

b) You go 10 units to the right and 20 units up; s = 2t

Speed, <i>s</i> (km/h)
0
20
40
60
80

				Tim	ė (s)			
	0	1	02	0 3	0 4	10	50) x
	-10-						1	
_	-20-	•	-			┢	+	
Spee	-30-				-	┢	+	
ĕ_	40-		-	∳—	-	-	+	
(f 	-50 -					-	+	
	·60-			-	┝─	-	+	
	у 70-							
						<u> </u>		

c) Start at 22 and go 10 units right and 20 units up; s = 2t + 22

Time, <i>t</i> (s)	Speed, s (km/h)
0	22
10	42
20	62
30	82
40	102

	y 100 90 80	•	
eed (km/	-60 - -50 -	•	_
-Sp	-40 - -30 - -20 -		
	10-		*
	0	Time (s)	~

d) Answers will vary. Examples: Similarity: They all go 10 units right and 20 units up. Difference: They start on the *y*-axis at different values.

Graphic Organizer, page 340

Answers will vary. Examples:

Left column:

Define linear relation: A relation that appears as a straight line when graphed.

Give an example of how to solve a linear equation:

$$2x - 7 = 15$$
$$2x - 7 + 7 = 15 + 7$$
$$2x = 22$$
$$x = 22$$

Explain how to interpolate values on a graph: Look between 2 plotted points on the graph. Choose a point, and follow the line to the x- and y-axes to see what the values are. Write the values as a coordinate pair.

Describe how to create a graph from a linear equation: Create a table of values, choosing 4 values for the inputs. Determine the outputs. Plot the 4 coordinate pairs on a grid.

Right column:

List ways you can represent patterns: a table of values, in words as a description, in a graph, as an equation

Describe a pattern using a linear equation: y = 3x + 2 means the *y*-values start at 2 and then increase by 3, for example, (0, 2) (1, 5) (2, 8)

Explain how to extrapolate values on a graph: Extend the line that goes through the given points on a graph. Choose a point along the extended line and follow the line to the *x*- and *y*-axes to see what the values are. Write the values as a coordinate pair.

Give an example of an equation for a horizontal line: y = 4

Give an example of an equation for a vertical line: x = 2

Chapter 6 Review, pages 341-344

1. linear relation **2.** extrapolate **3.** linear equation **4.** interpolate **5. a**) 4, 3

b)	Figure Number, <i>n</i>	Number of Toothpicks, <i>t</i>
	1	4
	2	7
	3	10
	4	13

c)	Figure Number, <i>n</i>		Number of Toothpicks, <i>t</i>
	1	$\times 3 + 1 \rightarrow$	4
	2	$\times 3 + 1 \rightarrow$	7
	3	$\times 3 + 1 \rightarrow$	10
	4	$\times 3 + 1 \rightarrow$	13

Equation: t = 3n + 1

d) 31 toothpicks

6. a)	Week, w	Amount in the Bank, A (\$)
	0	56
	1	71
	2	86
	3	101
	4	116
	5	131

d) A = 15w + 56 **c**) Derek will have \$581 after 35 weeks. **d**) It will take him 29.6 or about 30 weeks to save \$500.

7. a) 84 b) 70 c) 1000 d) 3000 e) YES, Answers will vary. Example: Values of air pressure and altitude both exist beyond and between points on the graph.

b) 38 teachers c) 54 teachers d) 625 students e) 1125 students

10.

b) Answers will vary. Example: A car starting 30 km from home and then driving away at a speed of 60 km/h. **c)** d = 60t + 30 **d)** speed; Answers will vary. Example: The distance the car was from home before driving.

a)	Rental Days, d	Rental Cost, <i>C</i>
	0	40
	1	60
	2	80
	3	100
	4	120
	5	140

b) \$60; \$180 **c)** 13 days **d)** Substitute the known value into the equation and solve for the unknown value.

Key Word Builder, page 345

1. A 2. E 3. F 4. A 5. D 6. C 7. G

Chapter 6 Practice Test, pages 346–349

1. C 2. B 3. C

4.2.5

5. 4.5

6. a)	Term, t	Value, v	b) 2 c) -42
	1	-2	
	2	-6	
	3	-10	
	4	-14	
	5	-18	

 a) \$32 b) NO; Answers will vary. Example: You cannot buy part of a topping.

8. Answers will vary. Examples:

-4 -3 -2 -10 1 2 x

9. a) Trail Number, Total Distance,

п	d
1	8
2	10
3	12
4	14
5	16

Math Link: Wrap It Up!, pages 350-351

Answers will vary. Examples: 1. a) Up a river to a lake. b) The trip will be 2 days. C) Terry 20, Keight 15, Susan 13 are going.

2. a)	Number of Days, d	0	1	2
	Total Food Energy Required, C	0	6500	13 000

3. a) Question: After 1.5 days, how many calories would the group have consumed? Answer: 9750 calories b) Question: How many calories of food would the group need to pack if the trip takes 4 days instead of 2? Answer: 26 000 calories

Challenge, pages 352–353

- 1. BALLOON 2; Answers will vary. Example: The altitude over time is getting lower.
- **2.** a) The balloon climbed 5000 m.; 5000 m b) 10 100 m; 15 100 m
- **3. a)** 1500 m; 3000 m/h **b)** 5100 m; 3600 m

5. 9:35 a.m.; I interpolated the time from the line on the graph.