Pre-Calculus 12 Final Exam Written Response

Write your response in the space provided. Persent your response in a well-organized way, writing complete sentences and correct units.

1. Solve $4^x = 500$. Round your answer to two decimal places.

2. Consider graphs of the form y - k = f(x - h) and y = f(x). What is a general rule about the effects of *h* and *k*?

3. Given the function y = f(x) shown, describe the transformations that must be applied to it in order to obtain the transformed function y = 2f(3x). Sketch the transformed function using a table of values.

Copyright © 2012 Mc-Graw-Hill Ryerson Limited, ISBN: 978-0-07-073872-0

4. The graph of the function y = f(x) has been transformed by either a stretch or a reflection. Write the equation of the transformed graph g(x).

5. Given the graph of y = f(x) shown, graph a reflection through the *x*-axis.

6. Sketch a graph of $y = \log_2 x$.

7. Describe the characteristics of the graph of $y = \log_2 x$. Include the domain, range, vertical asymptote, and intercepts.

8. An investor wants to find out how long it would take to double an investment if the interest rate was 1.5%. The exponential growth formula for compounding interest is $A = Pe^{rt}$ where *A* is final amount in the account, *P* is the initial amount invested in the account, *r* is the rate of interest, *e* is the irrational number 2.71828..., and *t* is time in years. How long would it take to double an initial investment of \$2000?

9. The sum of $f(x) = x^2$ and g(x) = x + 1 is h(x). Sketch a graph of h(x) and determine the domain and range of the graph.

1			 		 		
i .							
 +	 	 	 	 	 	 	
 +	 	 	 	 	 	 	
 ÷	 	 	 	 	 	 	

10. Divide $\frac{(2x^3 - x^2 + 3x - 2)}{(x - 2)}$ using synthetic division. Check the remainder using the remainder theorem. What is the relationship between the remainder and the value of f(2)?

11. Describe the rules for the graph of odd degree and even degree functions.

12. Suppose f(x) = x + 4 and $g(x) = 2x^2$. Find f(g(x)). State the domain and range of f(g(x)) and find f(2).

13. Use an example to show why ${}_{n}C_{r} = {}_{n}C_{n-r}$.

14. Expand $(x + 3)^4$. Explain the connection between this expansion and Pascal's triangle.

15. Explain how to find the subsequent row in Pascal's triangle.

16. Sketch, without technology, the graph of $y = \sqrt{3(x+7)}$ using transformations. Explain your approach.

· · · · · · ·		 	 	 	 	 	 	
	ļ	 	 	 	 	 	 	

17. Find the general solution to $2 \cos x = 1$.

18. Find the measure of two angles that are coterminal with 120° and whose measures lie between -500° and $+500^{\circ}$. Give the expression that represents any coterminal angle with 120° where *n* is an integer.

