Chapter 2 Radical Functions

2.1 Radical Functions and Transformations, pages 72 to 77

Answers • MHR 563

\4 /

1

- negative indicating days remaining, and the maximum value of *P* is 20 million.
 b) a = -2 → reflected in *d*-axis, vertical stretch factor of 2; b = -1 → reflected in *P*-axis;
 - $k = 20 \rightarrow$ vertical translation up 20 units.

Since d is negative, then d represents the number of days remaining before release and the function has a maximum of 20 million pre-orders.

d) 9.05 million or 9 045 549 pre-orders.

- 14. a) Polling errors reduce as the election approaches.
 b) y = 0.49√-x There are no translations since the graph starts on the origin. The graph is reflected in the y-axis then b = -1. Develop the equation by using the point (-150, 6) and substituting in the equation y = a√x, solving for a, then a = 0.49.
 - c) $a = 0.49 \rightarrow$ vertical stretch factor of 0.49 $b = -1 \rightarrow$ reflected in the *y*-axis
- **15.** $y \approx 2.07 \sqrt{-x}$

a)
$$y = -2\sqrt{x-2} + 5$$
 b) $y = \frac{2}{2}\sqrt{3-x} - 2$

17. a) China, India, and USA (The larger the country the more unfair the "one nation – one vote" system becomes.) Tuvalu, Nauru, Vatican City (The smaller the nation the more unfair the "one person – one vote" system becomes.)

b)	Nation	Percentage	d)	Nation	Percentage
	China	18.6%		China	4.82%
	India	17.1%		India	4.62%
	US	4.5%		US	2.36%
	Canada	0.48%		Canada	0.77%
	Tuvalu	0.000 151%		Tuvalu	0.014%
	Nauru	0.000 137%		Nauru	0.013%
	Vatican City	0.000 014%		Vatican City	0.004%

- c) $V(x) = \frac{1}{1000}\sqrt{x}$
- e) The Penrose system gives larger nations votes based on population but also provides an opportunity for smaller nations to provide influence.
- 18. Answers will vary.

iii)
$$j^{-1}(x) = \frac{1}{2}(x+6)^2 + \frac{7}{2}, x \ge -6$$

20. Vertical stretch by a factor of $\frac{10}{25}$. Horizontal stretch by a factor of $\frac{7}{72}$. Reflect in both the *x* and *y* axes. Horizontal translation of 3 units left. Vertical translation of 4 units down.

C1 The parameters *b* and *h* affect the domain. For example, $y = \sqrt{x}$ has domain $x \ge 0$ but $y = \sqrt{2(x-3)}$ has domain $x \ge 3$. The parameters *a* and *k* affect the range. For example, $y = \sqrt{x}$ has range $y \ge 0$ but $y = \sqrt{x} - 4$ has range $y \ge -4$.

- **C2** Yes. For example, $y = \sqrt{9x}$ can be simplified to $y = 3\sqrt{x}$.
- **C3** The processes are similar because the parameters *a*, *b*, *h*, and *k* have the same effect on radical functions and quadratic functions. The processes are different because the base functions are different: one is the shape of a parabola and the other is the shape of half of a parabola.

C4 Step 1 $\sqrt{2}$; Step 2 $\sqrt{3}$

Step 4	Triangle Number, n	Length of Hypotenuse, L
	First	$\sqrt{2} = 1.414$
	Second	√ <u>3</u> = 1.732
	Third	$\sqrt{4} = 2$

Step 5 $L = \sqrt{n+1}$ Yes, the equation involves a horizontal translation of 1 unit left.

2.2 Square Root of a Function, pages 86 to 89

- **b)** When 4 x < 0 then $\sqrt{4 x}$ is undefined; when 0 < 4 - x < 1 then $\sqrt{4 - x} > 4 - x$; when 4 - x > 1 then $4 - x > \sqrt{4 - x}$; $4 - x = \sqrt{4 - x}$ when y = 0 and y = 1
- c) The function $f(x) = \sqrt{4 x}$ is undefined when 4 - x < 0, therefore the domain is $\{x \mid x \le 4, x \in R\}$ whereas the function f(x) = 4 - x has a domain of $\{x \mid x \in R\}$. Since $\sqrt{f(x)}$ is undefined when f(x) < 0, the range of $\sqrt{f(x)}$ is $\{f(x) \mid f(x) \ge 0, f(x) \in R\}$, whereas the range of f(x) = 4 - x is $\{f(x) \mid f(x) \in R\}$.

The domains differ since $\sqrt{x-2}$ is undefined when x < 2. The range of $y = \sqrt{x-2}$ is $y \ge 0$, when $x - 2 \ge 0$.

C)

For y = -x + 9, domain $\{x \mid x \in R\}$, range $\{y \mid y \in R\}$; for $y = \sqrt{-x + 9}$, domain $\{x \mid x \le 9, x \in R\}$, range $\{y \mid y \ge 0, y \in R\}$. $y = \sqrt{-x + 9}$ is undefined when -x + 9 < 0, therefore $x \le 9$ and $y \ge 0$.

For y = 2x + 6,

 $v = \sqrt{2x+6}$

domain

range

domain $\{x \mid x \in \mathbb{R}\},\$

 $\{x \mid x \ge -3, x \in \mathbb{R}\},\$

 $\{y \mid y \ge 0, y \in \mathbb{R}\}.$

 $y = \sqrt{2x+6}$ is

undefined when

2x + 6 < 0, therefore

range $\{y \mid y \in R\}$. For

For y = -0.1x - 5, domain $\{x \mid x \in R\}$, range $\{y \mid y \in R\}$; for $y = \sqrt{-0.1x - 5}$, domain $\{x \mid x \le -50, x \in R\}$, range $\{y \mid y \ge 0, y \in R\}$. $y = \sqrt{-0.1x - 5}$ is undefined when -0.1x - 5 < 0, therefore $x \le -50$ and $y \ge 0$. **6. a)** For $y = x^2 - 9$, domain $\{x \mid x \in R\}$, range $\{y \mid y \ge -9, y \in R\}$. For $y = \sqrt{x^2 - 9}$,

domain { $x \mid x \le -3$ and $x \ge 3$, $x \in \mathbb{R}$ }, range { $y \mid y \ge 0$, $y \in \mathbb{R}$ }. $y = \sqrt{x^2 - 9}$ is undefined when $x^2 - 9 < 0$, therefore $x \le -3$ and $x \ge 3$ and $y \ge 0$. **b**) For $y = 2 - x^2$, domain { $x \mid x \in \mathbb{R}$ },

- For $y = 2 x^2$, domain $\{x \mid x \in \mathbb{N}\}$, range $\{y \mid y \le 2, y \in \mathbb{R}\}$. For $y = \sqrt{2 - x^2}$, domain $\{x \mid -\sqrt{2} \le x \le \sqrt{2}, x \in \mathbb{R}\}$, range $\{y \mid 0 \le y \le \sqrt{2}, y \in \mathbb{R}\}$. $y = \sqrt{2 - x^2}$ is undefined when $2 - x^2 < 0$, therefore $x \le \sqrt{2}$ and $x \ge -\sqrt{2}$ and $0 \le y \le \sqrt{2}$.
- c) For $y = x^2 + 6$, domain $\{x \mid x \in R\}$, range $\{y \mid y \ge 6, y \in R\}$. For $y = \sqrt{x^2 + 6}$, domain $\{x \mid x \in R\}$, range $\{y \mid y \ge \sqrt{6}, y \in R\}$. $y = \sqrt{x^2 + 6}$ is undefined when $x^2 + 6 < 0$, therefore $x \in R$ and $y \ge \sqrt{6}$.
- **d)** For $y = 0.5x^2 + 3$, domain $\{x \mid x \in R\}$, range $\{y \mid y \ge 3, y \in R\}$. For $y = \sqrt{0.5x^2 + 3}$, domain $\{x \mid x \in R\}$, range $\{y \mid y \ge \sqrt{3}, y \in R\}$. $y = \sqrt{0.5x^2 + 3}$ is undefined when $0.5x^2 + 3 < 0$, therefore $x \in R$ and $y \ge \sqrt{3}$.

- 7. a) Since $y = \sqrt{x^2 25}$ is undefined when $x^2 25 < 0$, the domain changes from $\{x \mid x \in R\}$ to $\{x \mid x \leq -5 \text{ and } x \geq 5, x \in R\}$ and the range changes from $\{y \mid y \geq -25, y \in R\}$ to $\{y \mid y \geq 0, y \in R\}$.
 - **b)** Since $y = \sqrt{x^2 + 3}$ is undefined when $x^2 + 3 < 0$, the range changes from $\{y \mid y \ge 3, y \in \mathbb{R}\}$ to $\{y \mid y \ge \sqrt{3}, y \in \mathbb{R}\}$.
 - c) Since $y = \sqrt{32 2x^2}$ is undefined when $32 2x^2 < 0$, the domain changes from $\{x \mid x \in R\}$ to $\{x \mid -4 \le x \le 4, x \in R\}$ and the range changes from $\{y \mid y \le 32, y \in R\}$ to $\{y \mid 0 \le y \le \sqrt{32}, y \in R\}$ or $\{y \mid 0 \le y \le 4\sqrt{2}, y \in R\}$.
 - **d)** Since $y = \sqrt{5x^2 + 50}$ is undefined when $5x^2 + 50 < 0$, the range changes from $\{y \mid y \ge 50, y \in R\}$ to $\{y \mid y \ge \sqrt{50}, y \in R\}$ or $\{y \mid y \ge 5\sqrt{2}, y \in R\}$.

- c) The graph of $y = \sqrt{j(x)}$ does not exist because all of the points on the graph y = j(x) are below the x-axis. Since all values of j(x) < 0, then $\sqrt{j(x)}$ is undefined and produces no graph in the real number system.
- d) The domains of the square root of a function are the same as the domains of the function when the value of the function ≥ 0. The domains of the square root of a function do not exist when the value of the function < 0. The ranges of the square root of a function are the square root of the range of the original function, except when the value of the function < 0 then the range is undefined.</p>
- **10.** a) For $y = x^2 4$, domain $\{x \mid x \in R\}$, range $\{y \mid y \ge -4, y \in R\}$; for $y = \sqrt{x^2 - 4}$, domain $\{x \mid x \le -2 \text{ and } x \ge 2, x \in R\}$, range $\{y \mid y \ge 0, y \in R\}$.
 - **b)** The value of y in the interval (-2, 2) is negative therefore the domain of $y = \sqrt{x^2 4}$ is undefined and has no values in the interval (-2, 2).

I sketched the graph by locating key points, including invariant points, and determining the image points on the graph of the square root of the function.

b) For y = f(x), domain $\{x \mid x \in R\}$, range $\{y \mid y \ge -1, y \in R\}$; for $y = \sqrt{f(x)}$, domain $\{x \mid x \le -0.4 \text{ and } x \ge 2.4, x \in R\}$, range $\{y \mid y \ge 0, y \in R\}$

The domain of $y = \sqrt{f(x)}$, consists of all values in the domain of f(x) for which $f(x) \ge 0$, and the range of $y = \sqrt{f(x)}$, consists of the square roots of all values in the range of f(x) for which f(x) is defined.

- **12. a)** $d = \sqrt{h^2 + 12756h}$
 - **b)** domain $\{h \mid h \ge 0, h \in \mathbb{R}\}$, range $\{d \mid d \ge 0, d \in \mathbb{R}\}$
 - c) Find the point of intersection between the graph of the function and h = 800. The distance will be expressed as the *d* value of the ordered pair (h, d). In this case, *d* is approximately equal to 3293.
 - **d)** Yes, if *h* could be any real number then the domain is $\{h \mid h \leq -12\ 756 \text{ or } h \geq 0, h \in \mathbb{R}\}$ and the range would remain the same- since all square root values must be greater than or equal to 0.
- **13.** a) No, since \sqrt{a} , a < 0 is undefined, then $y = \sqrt{f(x)}$ will be undefined when f(x) < 0, but f(x) represents values of the range not the domain as Chris stated.
 - b) If the range consists of negative values, then you know that the graph represents y = f(x) and not $y = \sqrt{f(x)}$.

14. a)
$$v = \sqrt{3.24 - h^2}$$

- **b)** domain $\{h \mid 0 \le h \le 1.8, h \in \mathbb{R}\}$, range $\{v \mid 0 \le v \le 1.8, v \in \mathbb{R}\}$ since both h and vrepresent distances.
- c) approximately 1.61 m

Step 2 The parameter *a* determines the minimum value of the domain (-a) and the maximum value of the domain (a); therefore the domain is $\{x \mid -a \le x \le a, x \in \mathbb{R}\}$. The parameter *a* also determines the maximum value of the range, where the minimum value of the range is 0; therefore the range is $\{y \mid 0 \le y \le a, y \in \mathbb{R}\}$.

Step 3 Example: $y = \sqrt{3^2 - x^2}$ the reflection of the graph in the x-axis is the equation $y = -\sqrt{3^2 - x^2}$.

18. Example: Sketch the graph in the following order: Stretch vertically by a factor of 2. 1) y = 2f(x)2) y = 2f(x - 3)Translate horizontally 3 units

right.

3) $y = \sqrt{2f(x-3)}$ Plot invariant points and sketch a smooth curve above the x-axis. 4) $y = -\sqrt{2f(x-3)}$ Reflect $y = \sqrt{2f(x-3)}$ in the x-axis. **b)** $r = \sqrt{\frac{A}{\pi(1 + \sqrt{37})}}$

19. a)
$$r = \sqrt{\frac{A}{6\pi}}$$

- **C1** Example: Choose 4 to 5 key points on the graph of y = f(x). Transform the points $(x, y) \to (x, \sqrt{y})$. Plot the new points and smooth out the graph. If you cannot get an idea of the general shape of the graph, choose more points to graph.
- **C2** The graph of y = 16 4x is a linear function spanning from quadrant II to quadrant IV with an *x*-intercept of 4 and a *y*-intercept of 16. The graph of $y = \sqrt{16 - 4x}$ only exists when the graph of y = 16 - 4x is on or above the x-axis. The y-intercept is at $\sqrt{16} = 4$ while the x-intercept stays the same. *x*-values for $x \le 4$ are the same for both functions and the y-values for $y = \sqrt{16 - 4x}$ are the square root of *y* values for y = 16 - 4x.
- **C3** No, it is not possible, because the graph of y = f(x)may exist when y < 0 but the graph of $y = \sqrt{f(x)}$ does not exist when v < 0.

b) The graph of $y = (x - 1)^2 - 4$ is a quadratic function with a vertex of (1, -4), *y*-intercept of -3, and x-intercepts of -1 and 3. It is above the x-axis when x > 3 and x < -1. The graph of $y = \sqrt{(x-1)^2 - 4}$ has the same x-intercepts but no y-intercept. The graph only exists when x > 3 and x < -1.

2.3 Solving Radical Equations Graphically, pages 96 to 98

- **17.** Lengths of sides are 55.3 cm, 60 cm, and 110.6 cm or 30.7 cm, 60 cm, and 61.4 cm.
- **C1** The *x*-intercepts of the graph of a function are the solutions to the corresponding equation. Example: A graph of the function $y = \sqrt{x-1} 2$ would show that the *x*-intercept has a value of 5. The equation that corresponds to this function is $0 = \sqrt{x-1} 2$ and the solution to the equation is 5.
- **C2 a)** $s = \sqrt{9.8d}$ where s represents speed in metres per second and d represents depth in metres.

- **b)** $s = \sqrt{9.8d}$
 - $s = \sqrt{(9.8 \text{ m/s}^2)(2500 \text{ m})}$
 - $s = \sqrt{24} 500 \text{ m}^2/\text{s}^2$
 - $s \approx 156.5 \text{ m/s}$
- c) approximately 4081.6 $\ensuremath{\mathsf{m}}$
- **d)** Example: I prefer the algebraic method because it is faster and I do not have to adjust window settings.
- **C3** Radical equations only have a solution in the real number system if the graph of the corresponding function has an *x*-intercept. For example, $y = \sqrt{x} + 4$ has no real solutions because there is no *x*-intercept.
- **C4** Extraneous roots occur when solving equations algebraically. Extraneous roots of a radical equation may occur anytime an expression is squared. For example, $x^2 = 1$ has two possible solutions, $x = \pm 1$. You can identify extraneous roots by graphing and by substituting into the original equation.

Chapter 2 Review, pages 99 to 101

1. a)

c)

domain $\{x \mid x \ge 0, x \in \mathbb{R}\}$

range { $y \mid y \ge 0, y \in \mathbb{R}$ } All values in the table lie on the smooth curve graph of $y = \sqrt{x}$.

domain $\{x \mid x \le 3, x \in \mathbb{R}\}$

range { $y | y \ge 0, y \in \mathbb{R}$ } All points in the table lie on the graph of $y = \sqrt{3 - x}$.

domain $\{x \mid x \ge -3.5, x \in \mathbb{R}\}$

range { $y \mid y \ge 0, y \in \mathbb{R}$ } All points in the table lie on the graph of $y = \sqrt{2x + 7}$.

- **2.** Use $y = a\sqrt{b(x-h)} + k$ to describe transformations.
 - a) $a = 5 \rightarrow$ vertical stretch factor of 5 $h = -20 \rightarrow$ horizontal translation left 20 units; domain {x | x ≥ -20, x ∈ R}; range {y | y ≥ 0, y ∈ R}
 - **b)** $b = -2 \rightarrow$ horizontal stretch factor of $\frac{1}{2}$, then reflected on *y*-axis: $k = -8 \rightarrow$ vertical translation of 8 units down. domain $\{x \mid x \le 0, x \in R\}$; range $\{y \mid y \ge -8, y \in R\}$

c) $a = -1 \rightarrow$ reflect in x-axis $b = \frac{1}{6} \rightarrow$ horizontal stretch factor of 6 $h = 11 \rightarrow$ horizontal translation right 11 units; domain $\{x \mid x \ge 11, x \in \mathbb{R}\}$, range $\{y \mid y \le 0, y \in \mathbb{R}\}$. **3.** a) $y = \sqrt{\frac{1}{10}x} + 12$, domain $\{x \mid x \ge 0, x \in \mathbb{R}\}$, range $\{y \mid y \ge 12, y \in \mathbb{R}\}$ **b)** $y = -2.5\sqrt{x+9}$ domain $\{x \mid x \ge -9, x \in \mathbb{R}\}$, range $\{y \mid y \le 0, y \in \mathbb{R}\}$ c) $y = \frac{1}{20}\sqrt{-\frac{2}{5}(x-7)} - 3,$ domain {x | x ≤ 7, x ∈ R}, range {y | y ≥ -3, y ∈ R} 4. a) domain $y = -\sqrt{x - 1} + 2$ $\{x \mid x \ge 1, x \in \mathbb{R}\},\$ (1, 2)2 range $\{y \mid y \le 2, y \in \mathbb{R}\}$ 6 0 ₫ b) domain V $\{x \mid x \le 0, x \in \mathbb{R}\},\$ 2 range $\{v \mid v \ge -4, v \in \mathbb{R}\}$ -6 -4 0 $y = 3\sqrt{-x} - 4$ (0, c) $v = \sqrt{2(x + 3)}$ 2 (-3, 1)4 0 4 6 8

domain {x | x ≥ -3, x ∈ R}, range {y | y ≥ 1, y ∈ R}
5. The domain is affected by a horizontal translation of 4 units right and by no reflection on the *y*-axis. The domain will have values of *x* greater than or equal to 4, due to a translation of the graph 4 units right. The range is affected by vertical translation of 9 units up and a reflection on the *x*-axis. The range will be less than or equal to 9, because the graph has been moved up 9 units and reflected on the *x*-axis, therefore the range is less

than or equal to 9, instead of greater than or equal to 9.

6. a) Given the general equation $y = a\sqrt{b(x - h)} + k$ to describe transformations, a = 100 indicates a vertical stretch by a factor of 100, k = 500 indicates a vertical translation up 500 units.

p 500 units. Since the minimum value of the graph is 500, the minimum estimated sales will be 500 units.

- c) domain $\{t \mid t \ge 0, t \in \mathbb{R}\}$ The domain means that time is positive in this situation. range $\{S(t) \mid S(t) \ge 500, S(t) \in \mathbb{W}\}$. The range means that the minimum sales are 500 units.
- **d)** about 1274 units $\sqrt{1}$
- 7. a) $y = \sqrt{\frac{1}{4}(x+3)} + 2$ b) $y = -2\sqrt{x+4} + 3$ c) $y = 4\sqrt{-(x-6)} - 4$
- 8. a) For y = x 2, domain $\{x \mid x \in R\}$, range $\{y \mid y \in R\}$; for $y = \sqrt{x - 2}$, domain $\{x \mid x \ge 2, x \in R\}$, range $\{y \mid y \ge 0, y \in R\}$. The domain changes because the square root function has restrictions. The range changes because the function only exists on or above the x-axis.
 - b) For y = 10 x, domain {x | x ∈ R}, range {y | y ∈ R}; for y = √10 x, domain {x | x ≤ 10, x ∈ R}, range {y | y ≥ 0, y ∈ R} The domain changes because the square root function has restrictions. The range changes because the function only exists on or above the x-axis.
 - c) For y = 4x + 11, domain $\{x \mid x \in \mathbb{R}\}$, range $\{y \mid y \in \mathbb{R}\}$; for $y = \sqrt{4x + 11}$, domain $\{x \mid x \ge -\frac{11}{4}, x \in \mathbb{R}\}$,

range $\{y \mid y \ge 0, y \in \mathbb{R}\}$. The domain changes because the square root function has restrictions. The range changes because the function only exists on or above the *x*-axis.

Plot invariant points at the intersection of the graph and lines y = 0and y = 1. Plot any points (x, \sqrt{y}) where the value of y is a perfect square. Sketch a smooth curve through the invariant points and points satisfying (x, \sqrt{y}) .

- **b)** $y = \sqrt{f(x)}$ is positive when f(x) > 0, $y = \sqrt{f(x)}$ does not exist when f(x) < 0. $\sqrt{f(x)} > f(x)$ when 0 < f(x) < 1 and $f(x) > \sqrt{f(x)}$ when f(x) > 1
- c) For f(x): domain $\{x \mid x \in \mathbb{R}\}$, range $\{y \mid y \in \mathbb{R}\}$; for $\sqrt{f(x)}$, domain $\{x \mid x \ge -6, x \in \mathbb{R}\}$, range $\{y \mid y \ge 0, y \in \mathbb{R}\}$, since $\sqrt{f(x)}$ is undefined when f(x) < 0.
- **10. a)** $y = 4 x^2 \rightarrow \text{domain} \{x \mid x \in R\},$ range $\{y \mid y \le 4, y \in R\}$ for $y = \sqrt{4 - x^2} \rightarrow$ domain $\{x \mid -2 \le x \le 2, x \in R\},$ range $\{y \mid 0 \le y \le 2, y \in R\},$ since $4 - x^2 > 0$ only between -2 and 2 then the domain of $y = \sqrt{4 - x^2}$ is $-2 \le x \le 2$. In the domain of $-2 \le x \le 2$ the maximum value of $y = 4 - x^2$ is 4, so the maximum value of $y = \sqrt{4 - x^2}$ is $\sqrt{4} = 2$ then the range of the function $y = \sqrt{4 - x^2}$ will be $0 \le y \le 2$.

- **b)** $y = 2x^2 + 24 \rightarrow \text{domain } \{x \mid x \in \mathbb{R}\},$ range $\{y \mid y \ge 24, y \in \mathbb{R}\}$ for $y = \sqrt{2x^2 + 24} \rightarrow \text{domain } \{x \mid x \in \mathbb{R}\},$ range $\{y \mid y \ge \sqrt{24}, y \in \mathbb{R}\}.$ The domain does not change since the entire graph of $y = 2x^2 + 24$ is above the *x*-axis. The range changes since the entire graph moves up 24 units and the graph itself opens up, so the range becomes $y \ge \sqrt{24}.$
- c) $y = x^2 6x \rightarrow \text{domain} \{x \mid x \in \mathbb{R}\},\$ range $\{y \mid y \ge -9, y \in \mathbb{R}\}$ for $y = \sqrt{x^2 - 6x} \rightarrow$ domain $\{x \mid x \le 0 \text{ or } x \ge 6, x \in \mathbb{R}\},\$ range $\{y \mid y \ge 0, y \in \mathbb{R}\},\$ since $x^2 - 6x < 0$ between 0 and 6, then the domain is undefined in the interval (0, 6) and exists when $x \le 0$ or $x \ge 6$. The range changes because the function only exists above the *x*-axis.
- **11. a)** $h(d) = \sqrt{625 d^2}$

- range $\{h \mid 0 \le h \le 25, h \in \mathbb{R}\}$ In this situation, the values of
- c) In this situation, the values of h and d must be positive to express a positive distance. Therefore the domain changes to {d | 0 ≤ d ≤ 25, d ∈ R}. Since the range of the original function h(d) = √625 d² is always positive then the range does not change.

18. a) 130 m² **b)** 6 m

Chapter 2 Practice Test, pages 102 to 103

1. B **2.** A **3.** A **4.** C **5.** D **6.** B **7.** $x \approx -16.62$

- **8.** $y = 4\sqrt{x}$ or $y = \sqrt{16x}$
- **9.** For $y = 7 x \rightarrow \text{domain} \{x \mid x \in R\}$, range $\{y \mid y \in R\}$. Since $y = \sqrt{7 - x}$ is the square root of the *y*-values for the function y = 7 - x, then the domain and ranges of $y = \sqrt{7 - x}$ will differ. Since 7 - x < 0 when x > 7, then the domain of $y = \sqrt{7 - x}$ will be $\{x \mid x \le 7, x \in R\}$ and since $\sqrt{7 - x}$ indicates positive values only, then the range of $y = \sqrt{7 - x}$ is $\{y \mid y \ge 0, y \in R\}$.

10. The domain of y = f(x) is $\{x \mid x \in \mathbb{R}\}$, and the range of y = f(x) is $\{y \mid y \le 8, y \in \mathbb{R}\}$. The domain of $y = \sqrt{f(x)}$ is $\{x \mid -2 \le x \le 2, x \in \mathbb{R}\}$ and the range of $y = \sqrt{f(x)}$ is $\{y \mid 0 \le y \le \sqrt{8}, y \in \mathbb{R}\}$.

By checking, 2.2 is an extraneous root, therefore $x \approx 6.8$.

 $x \approx 6.8$

13. a) Given the general equation $y = a\sqrt{b(x-h)} + k$ to describe transformations, $b = 255 \rightarrow$ indicating a horizontal stretch by a factor of $\frac{1}{255}$. To sketch the graph of $S = \sqrt{255d}$, graph the function $S = \sqrt{d}$ and apply a horizontal stretch of $\frac{1}{255}$, every point on the graph of $S = \sqrt{d}$ will become

$$\left(\frac{d}{d}, S\right).$$

14. a) Given the general equation y = a√b(x - h) + k to describe transformations, a = -1 → reflection of the graph in the x-axis, b = 2 → horizontal stretch by a factor of 1/2, k = 3 → vertical translation up 3 units.

c) domain $\{x \mid x \ge 0, x \in \mathbb{R}\}$, range $\{y \mid y \le 3, y \in \mathbb{R}\}$.

- d) The domain remains the same because there was no horizontal translation or reflection on the y-axis. But since the graph was reflected on the x-axis and moved up 3 units and then the range becomes y ≤ 3.
- e) The equation $5 + \sqrt{2x} = 8$ can be rewritten as $0 = -\sqrt{2x} + 3$. Therefore the *x*-intercept of the graph $y = -\sqrt{2x} + 3$ is the solution of the equation $5 + \sqrt{2x} = 8$.

Step 1 Plot invariant points at the intersection of y = f(x) and functions y = 0 and y = 1. **Step 2** Plot points at $\sqrt{\max \text{ value}}$ and $\sqrt{\text{perfect square value of } y = f(x)}$ **Step 3** Join all points with a smooth curve, remember

that the graph of $y = \sqrt{f(x)}$ is above the original graph for the interval $0 \le y \le 1$. Note that for the interval where f(x) < 0, the function $y = \sqrt{f(x)}$ is undefined and has no graph.

16. a)
$$y = (\sqrt{5})\sqrt{-(x-5)}$$

b) domain {x | 0 ≤ x ≤ 5, x ∈ R}, range {y | 0 ≤ y ≤ 5, y ∈ R} Domain: x cannot be negative nor greater than half the diameter of the base, or 5. Range: y cannot be negative nor greater than the height of the roof, or 5.

The height of the roof 2 m from the centre is about 4.58 m.