Date:

Pre-Calculus 11

Final Exam Multiple Choice and Numerical Response

Record your answers on the sheet provided.

1. Which of the following completes the geometric sequence , 8, 24, ?

A - 8, 40, 56

- **B** $\frac{8}{3}$, 8, 24, 72, 216 **C** -8, 16, 32
- **2.** Which of the following completes the geometric sequence 6, ______, _____, 7776? **A** 1948.5, 3891, 5833.5 **B** 42, 172, 1080 **C** 36, 216, 1296 **D** 36, -216,

- 3. The formula for the sum of the first n terms of an arithmetic series is $S_n = n^2 2n$. What are the first 4 terms of the series?

A - 1, 1, 3, 5

B 0, -1, 0, 3

- $\mathbf{C} = \{0, 0, 3, 8\}$ $\mathbf{D} = \{0, -1, -1, 2, 2, \dots, -1, -1, 2, \dots, -1, 2, \dots, 2,$
- **4.** What is $6.814 \overline{72}$ expressed as fraction?

A $\frac{681\ 472}{100\ 000}$ **B** $\frac{37\ 481}{11\ 000}$ **C** $\frac{37\ 481}{5500}$ **D** $\frac{681\ 472}{10\ 000}$

- 5. The volume of a sphere is 2304π cm³. Determine the radius using the formula $r = \sqrt[3]{\frac{3V}{4\pi}}$, where V is the volume in cubic units and r is the radius.

A 8 cm

B 12 cm

C 42 cm

D 1728 cm

6. What is the value of θ , $0^{\circ} \le \theta < 360^{\circ}$, if $\sin \theta = 0.3256$?

A 0.006

B 19° and 199° **C** 19° and 161° **D** 199° and 341°

7. What is the value of θ , $0^{\circ} \le \theta < 360^{\circ}$, if $\tan \theta = -\frac{1}{\sqrt{3}}$?

A - 0.01

B 30° and 150° **C** 150° and 300° **D** 150° and 330°

Numerical Response

8. What is the reference angle to an angle of 120° in standard position?

Numerical Response

9. The point P(6, -5) lies on the terminal arm of an angle in standard position. What is the value of the angle, to the nearest degree?

Na	me:			Date:		
Use	e this informatio	n to answer #10–13	3.			
	a company tele ompany presider	•	nployee is to call 3 o	ther employees. The tree begins with the		
10.	At what level a	are 243 employees c	ontacted?			
	A 4	B 5	C 6	D 7		
11.	How many employees are contacted at the 8th level?					
	A 729	B 2187	C 6561	D 19 683		
12.	By the 8th level, how many employees in total have been contacted?					
	A 729	B 2187	C 3280	D 9840		
13.	Suppose there are 3500 employees in the company. By what level will all the employees have been contacted?					
	A 9	B 10	C 11	D 12		
14.	rst vessel travels on a bearing of N68°W toward el travels at a speed of 35 km/h on a bearing of es at 1:30 p.m.?					
	A 19.5 km	B 23.3 km	C 23.7 km	D 47.4 km		
Use	e this informatio	on to answer #15–17	7.			
T	he height in feet	h, h , of a ball thrown	in the air after t sec	onds is given the equation $h(t) = -16t^2 + 48t + 3$.		
15.	What is the ma	ximum height that t	he hall reaches?			
	A 36 ft	B 39 ft	C 43 ft	D 51 ft		
16.	How long does it take for the ball to reach the maximum height?					
	A 1.1 s	B 1.5 s	C 1.8 s	D 2.2 s		
17.	To the nearest hundredth of a second, how long is the ball is in the air?					
	A 2.83 s	B 3.00 s	C 3.06 s	D 3.17 s		
Nu	merical Respor	ıse				
	_		on $6x^2 + 5x + 1 = 0$	0? Express your answer in decimal form.		
N	mariaal Dasnar	160				
14 U	merical Respor	150				

19. What is the greatest common factor of the expression $3x^2 + 6x - 21$?

Name:

20. In \triangle ABC, where \angle A = 24°, a = 60, and b = 90, which of the following solves the triangle where c is the largest side?

Date:

A
$$\angle A = 24^{\circ}$$
, $\angle B = 52^{\circ}$, $\angle C = 104^{\circ}$, $a = 60$, $b = 90$, $c = 119$

B
$$\angle A = 24^{\circ}$$
, $\angle B = 65^{\circ}$, $\angle C = 91^{\circ}$, $a = 60$, $b = 90$, $c = 110$

C
$$\angle A = 24^{\circ}$$
, $\angle B = 142^{\circ}$, $\angle C = 14^{\circ}$, $a = 60$, $b = 90$, $c = 36$

D
$$\angle A = 24^{\circ}$$
, $\angle B = 38^{\circ}$, $\angle C = 118^{\circ}$, $a = 60$, $b = 90$, $c = 130$

21. The ratio of the radii of two circles is 3:2. Expressed in terms of π , what are the areas of the circles if the radius of the larger circle is $(2 + \sqrt{x})$ cm and the radius of the smaller circle is $(2 - \sqrt{x})$ cm, $x \ge 0$?

- **B** larger circle: $\frac{54}{25}\pi$; smaller circle: $\frac{46}{25}\pi$
- C larger circle: $\frac{144}{625}\pi$; smaller circle: $\frac{64}{625}\pi$
- **D** larger circle: $\frac{144}{25}\pi$; smaller circle: $\frac{64}{25}\pi$

- **22.** Natalie is building a rectangular greenhouse. Since it is adjacent to her house, she only needs to build three sides of the greenhouse. Natalie's budget will allow her to build walls with a total length of 20 ft. What dimensions will ensure a greenhouse with the maximum possible area?
 - \mathbf{A} 5 ft × 5 ft
- **B** $6.6 \text{ ft} \times 6.6 \text{ ft}$
- \mathbf{C} 10 ft × 5 ft
- **D** $10 \text{ ft} \times 10 \text{ ft}$

Use this information to answer #23–24.

A square yard has an area of 98 m².

- **23.** What are the dimensions of the yard in simplest radical form?
 - A $7\sqrt{2}$ m by $7\sqrt{2}$ m
- $\mathbf{B} \sqrt{98} \text{ m by } \sqrt{98} \text{ m}$
- C $7\sqrt{14}$ m by $7\sqrt{14}$ m
- **D** $98\sqrt{1}$ m by $98\sqrt{1}$ m
- **24.** What is the length of a diagonal of the yard in simplest radical form?
 - $\mathbf{A} \sqrt{14} \, \mathbf{m}$
- **B** 14 m
- C $14\sqrt{2}$ m
- **D** 20 m

25. What is the solution to $\sqrt{2x+3} - \sqrt{x+2} = 2$?

B
$$x = 1$$

$$C x = 1 \text{ and } x = 23$$

D
$$x = 23$$

26. What is the solution to |5x + 1| = -3x + 15?

B
$$x = \frac{14}{8}$$

$$C \ x = -8$$

D
$$x = \frac{14}{8}$$
 and $x = -8$

27. You and a friend go on a cycling trip. On the first day, you plan to travel a total distance of 56 km, 14 km of which is uphill. On level ground, you cycle at a speed of b km/h. You slow down by 4 km/h when going uphill. If your total travel time is 5 h, what is your speed on level ground?

A
$$b = 2.7$$

B
$$b = 12.5$$

$$C b = 2.7 \text{ and } b = 12.5$$

There are no solutions.

Use this information to answer #28–29.

For the following rational expression, $\frac{x+3}{x+2} + \frac{x+11}{x^2-5x-14}$

28. Which of the following is the sum?

$$\mathbf{A} \frac{x^2 - 3x + 10}{(x - 7)(x + 2)}$$

B
$$\frac{x-5}{x-7}$$

B
$$\frac{x-5}{x-7}$$
 C $\frac{x+3}{x+2} + \frac{x+11}{(x-2)(x-7)}$ **D** $\frac{x+5}{x-7}$

D
$$\frac{x+5}{x-7}$$

29. What are the restrictions on the variable?

A
$$x \neq -2, x \neq 5$$

$$\mathbf{B} \ x \neq 7$$

C
$$x \neq -2, x \neq 7$$
 D $x \neq 5, x \neq 7$

D
$$x \neq 5, x \neq 7$$

Numerical Response

30. Solve for x: $\sqrt{(x^2 - 16)} = \sqrt{(x - 4)}$.

Use this information to answer #31–32.

For the following rational expression, $\frac{x+5}{x^2-9} + \frac{x-5}{2x-6} = \frac{x}{x+3}$

31. What is the solution to the equation?

A
$$x = 1$$

B
$$x = 5$$

$$C x = 5 \text{ and } x = 1$$

32. What are the restrictions on the variable?

A
$$x \neq 3, x \neq -3$$

$$\mathbf{B} \ x \neq -3$$

$$\mathbf{C} x \neq 5$$

D
$$x \neq 5, x \neq -5$$

Numerical Response

33. For what value of x is $\frac{x^2-9}{x-2}$ undefined?

Name:	Date:	
ranne.	Date.	

Use this information to answer #34–35.

Patrick makes exercise weights. For his 10-lb dumbbells, Patrick guarantees that the actual weight of his dumbbells is within 4 oz of 10 lbs. (Note: 1 lb = 16 oz)

34. What absolute value equation expresses the range of the actual weight of the dumbbells?

A
$$|x - 10| = 4$$

B
$$|x - 160| = 4$$

$$|x - 10| = 16$$

D
$$|x - 4| = 160$$

35. What is the range of the weight of the dumbbells, in ounces?

Numerical Response

36. One winter day, the temperature in Salmon Arm, BC, increased from -15° C to 2° C. What is the absolute value of the change?

Numerical Response

37. What value corrects the equation that incorrectly states that the absolute value of +3 plus the absolute value of -7 equals 4?

Use this information to answer #38–39.

The diameter of a steel ball bearing is 1.75 in. The ball bearing has a tolerance of ± 0.008 in.

38. Which of the following is an absolute value equation for the upper and lower limits of the diameter of the bushing?

A
$$|x - 1.75| = 0.008$$

$$C |x - 0.008| = 1.75$$

B
$$|x - 1.75| = 0.08$$

D
$$|x - 0.08| = 1.75$$

39. Which of the following are the limits?

A
$$1.746 - 1.754$$
 inches

$$C 1.67 - 1.83$$
 inches

B
$$1.7 - 1.79$$
 inches

D
$$1.742 - 1.758$$
 inches

Name:

Use this grid to sketch a graph to help you answer #40–41.

40. Given $y = -2(x + 4)^2 + 5$, what is the equation of the axis of symmetry of the graph of the function?

A x = -4

- **B** x = -2
- **C** x = 4 **D** x = 5
- **41.** What is the domain and range of the function $y = -2(x + 4)^2 + 5$?
 - A domain: $\{x \mid x \in R\}$; range: $\{y \mid y \in R\}$
 - **B** domain: $\{x \mid x \in R\}$; range: $\{y \mid y \ge 5, y \in R\}$
 - C domain: $\{x \mid x \ge -4; x \in R\}$, range: $\{y \mid y \le 5, y \in R\}$
 - **D** domain: $\{x \mid x \in R\}$; range: $\{y \mid y \le 5, y \in R\}$
- **42.** Given $y = -\frac{1}{3}x^2 2x 2$, what are the x-intercepts and y-intercepts of the graph of the function?
 - A x-intercept: (-1.3, 0); y-intercept: (0, -2)
 - **B** x-intercepts: (-4.7, 0) and (-1.3, 0); y-intercept: (0, -2)
 - C x-intercept: (0, -2); y-intercept: (-1.3, 0)
 - **D** x-intercept: (0, -2); y-intercepts: (-4.7, 0) and (-1.3, 0)

Name:	Date:	

Use this information to answer #43–44.

The popularity, p, of an Internet game is modelled by $p = -0.1d^2 + 2d + 35$, where d is the number of days the game has been available.

- **43.** Which statement best explains why is it reasonable for this situation to be modelled by a quadratic function?
 - A It is reasonable for this situation to be modelled by a quadratic function because the popularity of a game usually starts low and becomes increasingly popular over time.
 - **B** It is reasonable for this situation to be modelled by a quadratic function because the popularity of a game usually starts high and then decreases over time.
 - C It is reasonable for this situation to be modelled by a quadratic function because the popularity of a game remains constant over time.
 - **D** It is reasonable for this situation to be modelled by a quadratic function because the popularity of a game usually increases, peaks, and then decreases over time.
- **44.** On which day will the game be most popular?
 - A 10th day
- **B** 20th day
- C 35th day
- **D** 45th day
- **45.** The equation $x^2 2x + 36 = 0$ has how many roots?
 - A no real roots
- **B** 1 real root
- C 2 real roots
- **D** 4 real roots
- **46.** Which statement best describes why an equation with a discriminant of zero has one distinct real root?
 - A Consider the quadratic equation. When the discriminant is zero, the distinct real root is zero.
 - **B** Consider the quadratic equation. When the discriminant is zero, the equation is reduced to $x = \frac{\pm \sqrt{b^2 - 4ac}}{2a}$
 - C Consider the quadratic equation. When the discriminant is zero, the equation is reduced to $x = \frac{-b \pm 0}{2a}$, or $x = \frac{-b}{2a}$.
 - **D** Consider the quadratic equation. When the discriminant is zero, the equation is reduced to $x = \frac{b \pm 0}{2a}$, or $x = \frac{b}{2a}$.
- **47.** Which quadratic equation has roots of $-\frac{4}{5}$ and 3?
 - **A** $x^2 \frac{4}{5}x + 3 = 0$ **B** $x^2 + 11x 12 = 0$ **C** $5x^2 11x 12 = 0$ **D** $5x^2 + 11x 12 = 0$
- **48.** Given $y = \left| \frac{1}{3}x + 2 \right|$, what are the *x*-intercept, *y*-intercept, domain, and range?
 - A x-intercept: (-6, 0); y-intercept: (0, -2); domain: $\{x \mid x \in R\}$; range: $\{y \mid y \in R\}$
 - **B** x-intercept: (-6, 0); y-intercept: (0, -2); domain: $\{x \mid x \in R\}$; range: $\{y \mid y \ge 0, y \in R\}$
 - C x-intercept: (-6, 0); y-intercept: (0, 2); domain: $\{x \mid x \in R\}$; range: $\{y \mid y \in R\}$
 - **D** x-intercept: (-6, 0); y-intercept: (0, 2); domain: $\{x \mid x \in R\}$; range: $\{y \mid y \ge 0, y \in R\}$;

49. Which of the following is an example of an arithmetic sequence?

 \mathbf{A}

- **50.** What is the best rule for determining the general term of an arithmetic sequence?
 - A an ordered list of terms in which the difference between consecutive terms is constant
 - **B** an ordered list of terms in which the difference between consecutive terms is growing
 - C an ordered list of terms in which the difference between constant terms is variable
 - **D** an ordered list of variables in which the difference between consecutive terms is constant

Use this diagram to answer #51.

- **51.** If the stack has 16 cans in the third row from the bottom, how many cans are in the bottom row?
 - **A** 20
- **B** 18
- **C** 16
- **D** 8