Task: Model the Rotation of the Earth on its Polar Axis

Student Text Pages

272-273

Suggested Timing 80–160 min

Materials and Technology

Tools

grid paper

Related Resources

BLM G–1 Grid Paper
BLM 5–17 Chapter 5 Task Rubric

Accommodations

Gifted and Enrichment-

challenge students to research the rotation of the Earth and other planets and share the information with their classmates

Motor-have students work in groups to construct the 3-D model

Ongoing Assessment

• Use **BLM 5–17 Chapter 5 Task Rubric** to assess student achievement.

Specific Expectations

2.1, 2.2, 3.1, 3.2, 3.3

Teaching Suggestions

- You may wish to have students work in pairs or small groups to complete the task.
- Have students read the entire Task. Discuss the Task and ensure students understand what they are being asked to do.
- Distribute copies of **BLM G-1 Grid Paper**.

Hints for Evaluating a Response

Student responses are being assessed for the level of mathematical understanding they represent. As you assess each response, consider the following questions:

- How much assistance did the student need to create the table and draw the graphs?
- How much assistance did the student need to determine the maximum and minimum values, the intervals, and the equation?
- Which parts of the Task did the student complete/not complete?
- Did the student present work that was clear and easy to follow?
- Did the student demonstrate an understanding of the sine function?

Level 3 Notes

- Student demonstrates understanding of the sine function and the meaning of the equation and the shape of the graph in terms of the rotation of the Earth.
- Student demonstrates understanding of problem solving techniques.
- Student uses mathematical language effectively.
- Student's solution is clearly organized and choices are justified
- Student's 3-D model represents the position of the sun as the Earth rotates on its axis.
- Student's solution may contain minor errors.

Level 3 Sample Response

a)	Time of Day	θ	sin θ	Position Relative to Horizon
	06:00	0°	0.0	0
	08:00	30°	0.5	75 000 000
	10:00	60°	0.866	129 903 811
	12:00	90°	1	150 000 000
	14:00	120°	0.866	129 903 811
	16:00	150°	0.5	75 000 000
	18:00	180°	0.0	0
	20:00	210°	-0.5	-75 000 000
	22:00	240°	-0.866	-129 903 811
	00:00	270°	-1	$-150\ 000\ 000$
	02:00	300°	-0.866	-129 903 811
	04:00	330°	-0.5	-75 000 000
	06:00	360°	0.0	0

What Distinguishes Level 2

- Student demonstrates some understanding of the sine function and the meaning of the equation and the shape of the graph in terms of the rotation of the Earth.
- Student demonstrates some understanding of problem solving techniques.
- Student uses mathematical language somewhat effectively.
- Student's solution is somewhat organized and choices are partially or ineffectively justified.
- Student's 3-D model inaccurately represents the position of the sun as the Earth rotates on its axis.
- Student's solution may contain some significant errors.

What Distinguishes Level 4

- Student demonstrates thorough understanding of the sine function and the meaning of the equation and the shape of the graph in terms of the rotation of the Earth.
- Student demonstrates thorough understanding of problem solving techniques.
- Student uses mathematical language effectively.
- Student's solution is highly organized and choices are clearly justified.
- Student's 3-D model accurately and effectively represents the position of the sun as the Earth rotates on its axis.
- Student's solution contains very few or no errors.