Section 1.3 The Sine Law

- 1. State the sine law in two different forms.
- **2.** Find the measure of $\angle C$, to the nearest tenth of a degree.

3. Find the measure of the indicated side, to the nearest tenth.

BLM 1-7 (page 1)

4. Explain why the triangle cannot be solved using the sine law.

- **5.** Solve each triangle. Round your answers to the nearest unit, if necessary.
 - a) $\triangle ABC$, given $\angle B = 57^{\circ}$, $\angle C = 72^{\circ}$, and b = 18 m.
 - **b)** \triangle DEF, given \angle D = 66°, \angle F = 39°, and e = 10 ft.
 - c) \triangle GHI, given $\angle G = 72^{\circ}$, g = 15 cm, and h = 8 cm.

.3 The Sine Law

10.

BLM 1–7 (page 2)

6. Find the perimeter of isosceles $\triangle ABC$, to the nearest inch.

7. Find the length of side AB to the nearest tenth of a metre.

 Two guy wires 27 m and 15 m in length are to be fastened to the top of a TV tower from two points B and C as shown. The angle of elevation to the top of the tower of the longer wire is 32°.

b) How tall is the tower?

9. The longest side of a triangle is 33 ft. Find the lengths of the other two sides to the nearest foot.

- a) Use the sine ratio to find the value of x, to the nearest tenth.
- **b)** Use the sine law to find the value of *x*, to the nearest tenth.
- c) Explain why the two methods are equivalent for a right triangle.

Foundations for College Mathematics 11: Teacher's Resource BLM 1–7 Section 1.3 The Sine Law