BLM 4-3 (page 1)

Section 4.1 Modelling With Quadratic Relations

1. Graph each relation. Use the graph to determine if the relation is linear, quadratic, or neither.

a)	x	у
	-5	25
	-3	9
	-1	1
	1	1
	3	9
	5	25
	7	49

b)	x	У
	3	5
	4	6
	5	7
	6	8
	7	9
	8	10
	9	11

c)	x	У
	-3	-7
	-2	-2
	-1	1
	0	2
	1	1
	2	-2
	3	-7

d)	x	у
	0	1
	1	2
	2	9
	3	28
	4	65
	5	126
	6	217

- **2.** Use first and second differences to check your answers to question 1.
- 3. Which of these relations are quadratic? Explain. a) $v = x^3 + 4$ b) $v = 2x^2 + 5x - 6$

a) $y - x + 4$	b) $y - 2x + 5x - 6$
c) $y = 3^{x+1}$	d) $y = 6 + x^2$
e) $y = x + 7$	f) $y = -4x^2 + 4$

4. Estimate the maximum or minimum value for each relation, and state if it is a maximum or a minimum.

Name:

Date: _

- 5. A box of food supplies is parachuted from a cargo plane over a remote village in Africa. The height, *h*, of the box, in metres, *t* seconds after being dropped from the plane is given by the relation $h = -0.5t^2 + 1000$.
 - a) Complete the table of values.

Time	Height
(s)	(m)
0	
10	
20	
30	
40	

b) Graph the relation.

- c) Is the relation quadratic? Explain.
- 6. A clothesline is suspended between two poles, 10 m apart. To decide if the shape of the clothesline can be modelled by a quadratic relation, Jeffery takes these measurements:

Horizontal Distance From Pole	Height From Ground
(m)	(m)
0	2.7
1	2.2
2	1.8
3	1.5
4	1.3
5	1.2
6	1.3
7	1.5
8	1.8
9	2.2
10	2.7

- **a)** Graph the data.
- **b**) Is this relation quadratic? Explain
- 7. A daycare owner wants to use 160 m of fencing to build a small rectangular playground. She wants the playground to have the greatest possible area.
 - a) Complete the table of values.

Length (m)	Width (m)	Perimeter (m)
70	10	160
	20	
	30	
	40	
	50	
	60	
	70	

- **b)** Add a fourth column to the table. Calculate the area for each pair of dimensions.
- c) Draw a graph to compare the length and the area.
- **d)** Use the graph to determine the dimensions of the playground with the greatest possible area.
- 8. A golf warehouse sold 200 sleeves of golf balls for \$3 each. A survey suggests that for every \$1 increase in price, sales will drop by 40 sleeves.
 - a) Complete the table of values.

Price	Number	Revenue
(\$)	Sold	(\$)
3	200	600
4		
5		
6		
7		

- **b)** Draw a graph to compare price and revenue.
- c) Which price will result in a maximum revenue?
- d) What is the maximum revenue?