BLM 4–5 (page 1)

Section 4.2 The Quadratic Relation $y = ax^2 + k$

1. In each standard viewing window, the graph of $y = x^2$ is shown as a dotted parabola. The solid parabola is the graph of a quadratic relation of the form $y = ax^2$. For each solid parabola, is *a* less than -1, between -1 and 0, between 0 and 1, or greater than 1? Explain.

2. Describe the shape, orientation, and vertex of each parabola relative to the graph of $y = x^2$. Sketch each graph.

a) $y = -0.5x^2 + 2$ b) $y = 2x^2$ c) $y = -0.1x^2 - 6$ d) $y = x^2 + 4$ e) $y = -3x^2 - 5$ f) $y = 0.1x^2 + 2$ g) $y = 8x^2 + 4$ h) $y = -0.7x^2 - 3$

3. Sketch each relation, then represent the relation in the form of $y = ax^2 + k$.

a)	x	у
	-3	27
	-2	12
	-1	3
	0	0
	1	3
	2	12
	3	27

b)	x	у
	-4	9
	-2	3
	0	1
	2	3
	4	9

c)	x	у
	-3	-22
	-2	-12
	-1	-6
	0	-4
	1	-6
	2	-12
	3	-22

BL	M	4–5	
(p	age	ə 2)	

4. In each standard viewing window, the graph of $y = x^2$ is shown as a dotted parabola. The graph of a relation of the form $y = ax^2 + k$ is shown as a solid parabola. For each solid parabola, is *k* positive or negative? Explain.

- **5.** Suppose each pair of relations were graphed on the same set of axes. Which parabola would:
 - i) be the most vertically compressed (widest)?
 - ii) have its vertex farther from the x-axis?

a)
$$y = 3x^2$$

b) $y = 0.2x^2 + 3$
c) $y = x^2 + 5$
d) $y = -0.5x^2 - 6$
e) $y = -x^2 + 2$
f) $y = 0.5x^2 - 3$
 $y = 2x^2 - 1$
 $y = 0.1x^2 + 1$
 $y = -2x^2 + 3$
 $y = -2x^2 + 3$
 $y = -2x^2 + 6$
 $y = -0.1x^2 - 3$
 $y = 2x^2 + 4$

6. The shape of the Gateway arch in St Louis, Missouri, can be modelled by the relation $h = -0.02d^2 + 192$, where h is the height of the arch and d is the distance from the centre of the arch (the y-axis), both in metres.

- a) Graph the relation.
- **b**) Find the maximum height of the arch.
- c) Find the height of the arch for each horizontal distance.
- i) 20 m ii) 60 m iii) -80 m
- 7. Match each relation with its corresponding graph.

a)
$$y = 2x^2 + 3$$

b) $y = 0.5x^2 - 3$

- 8. In each case, the parabola $y = x^2$ is transformed as indicated. Write the equation of the new parabola in the form $y = ax^2 + k$.
 - a) The parabola is stretched vertically by a factor of 4.
 - **b)** The parabola is compressed vertically by a factor of 0.3.
 - c) The parabola is stretched vertically by a factor of 3 and then translated up 4 units.
 - **d)** The parabola is reflected in the *x*-axis and then translated down 3 units.