Section 4.3 The Quadratic Relation $y = a(x - h)^2$

1. In each standard viewing window, the graph of $y = x^2$ is shown as a dotted parabola, and the graph of a relation of the form $y = a(x - h)^2$ is shown as a solid parabola. For each solid parabola, identify the value of *h* and the coordinates of the vertex.

2. Describe the graph of each parabola relative to the graph of $y = x^2$ in terms of *a* and *h*. Sketch each graph.

a) $y = (x + 3)^2$ b) $y = (x - 1)^2$ c) $y = -(x + 2)^2$ d) $y = 0.5(x - 4)^2$ e) $y = -2(x + 1)^2$ f) $y = 0.4(x - 6)^2$ g) $y = -1.5(x + 5)^2$ h) $y = -3(x - 2)^2$ 3. In each standard viewing window, the graph of $y = x^2$ is shown as a dotted parabola. Describe the shape and position of each solid parabola relative to the graph of $y = x^2$ in terms of *a* and *h*.

BLM 4-6

4. Graph each relation, then write an equation in the form $y = a(x - h)^2$ that models each parabola.

a)	x	У
	-3	-8
	-2	-2
	-1	0
	0	-2
	1	-8
	2	-18
	3	-32

b)	x	У
	1	5.4
	2	2.0
	3	0.5
	4	0.0
	5	0.5
	6	2.0

5. Suppose each pair of relations were graphed on the same set of axes. Which parabola would have its vertex further from the *y*-axis? Justify your answer.

a) $y = 0.5(x+2)^2$ $y = 2(x-3)^2$ b) $y = 8(x-5)^2$ $y = 0.3(x+2)^2$

6. Match each relation to its corresponding graph.

a) $y = -3(x + 4)^2$ b) $y = -0.5(x - 6)^2$ c) $y = -(x + 4)^2$

- 7. In each case, the graph of $y = x^2$ is transformed as described. Write the equation of the new parabola in the form $y = a(x - h)^2$.
 - a) The parabola is reflected in the *x*-axis and translated 4 units right.
 - **b)** The parabola is compressed vertically by a factor of 0.6 and translated 2 units left.
 - c) The parabola is reflected in the *x*-axis, stretched by a factor of 2, and translated 6 units right.
 - d) The parabola is translated 10 units left.
- 8. The Roman aqueduct system in Mytilene transported water over a distance of approximately 26 km. The aqueduct system was supported by a series of parabolic arches. The shape of each arch can be modelled by the relation $y = -0.16(x 5)^2$, where x is the horizontal distance from the base of the arch and y is the height, both in metres.
 - a) Graph the shape of one arch.
 - **b)** If x = 0 and x = 10 represent the points where the arches touch the ground, what is the maximum height above the ground of each arch?
 - c) Suppose each arch was connected to the next arch end-to-end with no gaps. How many arches would be needed to cover the 26 km distance?