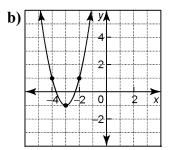
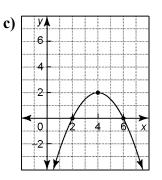
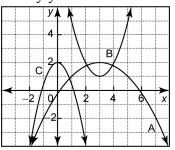

Section 4.4 The Quadratic Relation $y = a(x - h)^2 + k$

- **1.** For each parabola
 - i) identify the coordinates of the vertex
 - ii) determine whether *a* is positive or negative





2. Identify the coordinates of the vertex for each parabola, then write the equation of the relation in the form $y = a(x - h)^2 + k$.



Name:

l)			1			4		У			
								6	-		ļ
					1			-4			
				\backslash	/			-4			
								2			ļ
										-	~
	-	-	6	_	4	_	2	0		2	x
								-2			ļ
								,	7		

- 3. For each relation
 - identify the coordinates of the vertex
 - determine if the parabola opens upward or downward
 - determine whether the parabola is vertically stretched or vertically compressed
 - sketch the graph
 - a) $y = 3(x-2)^2 + 4$ b) $y = -0.3(x+1)^2 - 3$ c) $y = -2(x-3)^2 + 1$ d) $y = 3.5(x+5)^2 + 2$ e) $y = -0.5(x-3)^2 - 2$ f) $y = 4x^2 + 1$
- 4. Graph each quadratic relation.
 - a) $y = 2(x-3)^2 + 1$ b) $y = 0.5(x+4)^2 - 5$ c) $y = -4(x-8)^2 + 1$ d) $y = -0.3(x+1)^2 + 2$
- 5. An architect has designed a building with a roof that has a cross section in the shape of a parabolic arch. The shape of the arch can be modelled by the relation $y = -0.25(x 3)^2 + 2$. Which graph represents the shape of the arch? Justify your answer.

- BLM 4–7 (page 2)
- 6. A flare is launched into the air. The path of the flare can be modelled by the relation $h = -0.1(d 10)^2 + 25$, where h is the height of the flare and d is the horizontal distance of the flare from where it was fired, both in metres.
 - a) What is the vertex of the relation, and what do these coordinates represent?
 - b) From what initial height was the flare fired?
 - c) Graph of the path of the flare for d = 0 to d = 26.
- 7. A baseball is hit in the air. Its path can be modelled by the relation $h = -2(d-4)^2 + 33$, where *h* is the height of the ball and *d* is the horizontal distance, both in metres.
 - a) What is the vertex of this relation?
 - **b**) What is the maximum height of the ball?
 - c) What is the height of the ball when it has travelled a horizontal distance of 6 m?
 - **d)** What do the coordinates of the vertex represent in this situation?
- 8. The parabola $y = x^2$ is transformed. Write the relation of each transformed parabola in the form $y = a(x h)^2 + k$.
 - a) The parabola is vertically stretched by a factor of 2.
 - b) The parabola is vertically stretched by a factor of 3, translated 5 units right and 4 units up.
 - c) The parabola is vertically compressed by a factor of 0.5, reflected in the *x*-axis, translated 4 units left and 3 units down.
- 9. A hotel can rent all 600 rooms at \$72 per night. Market research has shown that for every \$4 increase in price, 10 fewer rooms will be rented. This situation can be modelled by the relation $R = -40(x - 21)^2 + 60\,840$ where *R* is revenue and *x* represents the number of \$4 increases in the price.
 - a) What is the vertex of the parabola?
 - **b)** What do the coordinates of the parabola represent?
 - c) What is the price to rent a room when the maximum revenue is obtained?