BLM 4–9 (page 1)

Section 4.5 Interpret Graphs of Quadratic Relations

1. Find the initial value for each relation.

a) $y = -12x^2 + 5x + 6$ b) $y = 30(x - 5)^2 + 7$ c) $y = 10x^2 + 7x - 9$ d) $y = -0.5x^2 + 0.3x - 60$

- 2. For each parabola, identify
 - i) the *x*-intercepts
 - ii) the *y*-intercept
 - iii) the minimum or maximum value
 - iv) the coordinates of the vertex

BLM 4–9 (page 2)

4. Match each relation with its graph.

5. A pebble is fired from a sling shot from the top of a small hill. The path of the pebble can be modelled by the relation

 $h = -5.25(t - 4)^2 + 96$, where *h* is the height of the pebble in metres and *t* is the time in seconds after the pebble was fired.

- a) Find the vertex of the parabola.
- **b)** How long will it take the pebble to reach its maximum height?
- c) What is the maximum height?
- d) What is the height of the small hill?

- 6. A golf ball is hit from the top of a cliff and fell to the green located at the bottom of the valley. The path of the golf ball can be modelled by the relation $h = -5(t-5)^2 + 60$ where *h* is the height in metres above the valley and *t* is the time after the ball was hit, in seconds.
 - a) What is the maximum height of the golf ball?
 - **b)** How long does it take the golf ball to reach its maximum height?
 - c) What is the height of the ball after 3 s?
 - d) What is the height of the ball after 7 s?
 - e) What do you notice about your answers to parts c) and d)? Explain.
 - f) What is the height of the cliff?
- 7. a) Graph the relation $y = 2(x-3)^2 + 1$ using the vertex and four other points. b) Graph the relation $y = 2x^2 - 12x + 19$ using
 - **b)** Graph the relation $y = 2x^2 12x + 19$ using a table of values.
 - c) What do you notice about the two graphs? Explain.