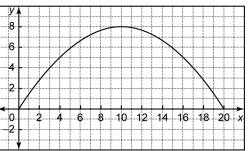

Date:

Chapter 4 Test

Choose the best answer for questions 1 to 5.


1. Which graph represents a quadratic relation?

2. Which of these quadratic relations opens upward?

A $y = -3(x+4)^2$ **B** $y = 0.25x^2 - 1$ **C** $y = 3(x+2)^2 + 5$ **D** Both B and C

3. The graph shows the path of a soccer ball after it was kicked. The *x*-values represent the horizontal distance travelled and the *y*-values represent the height of the ball, both in metres.

How far does the ball travel before it hits the ground?

A 10 m	B 20 m
C 40 m	D 8 m

- 4. Which set of transformations to the graph of $y = x^2$ would give the parabola $y = -3(x-2)^2 + 5?$
 - A A reflection in the *x*-axis, a vertical stretch by a factor of 3, a translation of 2 units right and 5 units up.
 - **B** A reflection in the *x*-axis, a vertical stretch by a factor of 3, a translation of 2 units left and 5 units down.
 - C A reflection in the *y*-axis, a vertical compression by a factor of 3, a translation of 2 units right and 5 units up.
 - **D** A reflection in the *y*-axis, a vertical stretch by a factor of 3, a translation of 2 units and 5 units up.

BLM 4-13	
(page 2)	

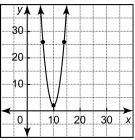
- 5. The relation $y = -2(x + 4)^2 3$ has A a maximum at (4, -3) B a minimum at (4, -3) C a maximum at (-4, -3) D a minimum at (-4, -3)
- 6. Which relations are quadratic? Justify your answers.

a)
$$y = x^2 + 4$$

b)
$$y = 4x + 6$$

c) $y = 2^{2+x}$		
d)	x	у
	-3	19
	-2	9
	-1	3
	0	1
	1	3
	2	9
	3	19

7. Describe the shape relative to $y = x^2$, the orientation, and coordinates of the vertex of each quadratic relation.


a) $y = 2(x+2)^2$ **b)** $y = -0.5x^2 - 3$ **c)** $y = (x-3)^2 + 8$ **d)** $y = -3(x-1)^2 - 2$

8. Which parabola in each pair would have its vertex farther from the *y*-axis? Explain.

a)
$$y = 5(x-4)^2$$
 $y = -4(x+2)^2$
b) $y = x^2 - 2$ $y = -x^2 + 2$
c) $y = 3(x-3)^2 + 9$ $y = -0.5(x+4)^2 + 8$
d) $y = (x-1)^2$ $y = 3(x+1)^2 - 1$

9. Refer to question 8. Which parabola in each pair would have its vertex farther from the *x*-axis? Explain.

10. Part of the track on an amusement ride is parabolic. The shape of this parabolic track is represented by the graph. On the graph, x represents the horizontal distance and y represents the height above the ground, both in metres.

- a) Write a relation that represents the shape of the parabolic track.
- b) A 2-g force is a force that makes you feel as if you are twice as heavy, such as the force that pushes you into the seat on a roller coaster. Riders experience a 2-g force at a horizontal distance of 9 m on the parabolic track. At what height do riders feel this effect?
- c) What is the closest distance the parabolic track comes to the ground? At what horizontal distance does this occur?
- 11. An arch at the entrance to a tunnel is in the shape of a parabola. The shape of the arch can be modelled by the relation h = -0.5x(x 16), where *h* is the height above the road and *x* is the horizontal distance, both in metres.
 - a) Graph the relation.
 - **b)** Use your graph to locate the vertex of the arch. Interpret the meaning of the coordinates of the vertex in this context.
 - c) What is the height of the opening at a distance 2 m from the base of the arch?
 - **d)** A truck is carrying a large crate 8 m wide by 23 m high. Can the truck pass through the tunnel? Explain.