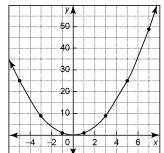
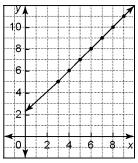

BLM Answers

BLM 4-1 Prerequisite Skills

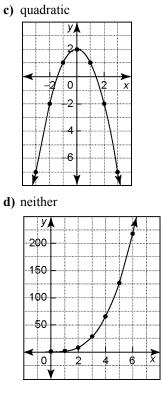
Foundations for College Mathematics 11: Teacher's Resource Chapter 4 Practice Masters Answers

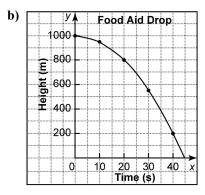

b) $m = -4, b = -6; m = -\frac{1}{3}, b = 10$

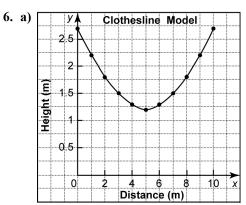
10. a)	x	у	First Differences	
	0	3	4	
	2	7	4	
	4	11	4	
	6	15	4	
	8	19	4	
	x	у	First Differences	
	0	0	1	
	1	1	7	
	23	8	19	
	3	27		
	4	64	37	
11. a)	m = -	2, $b = 3$	b) $m = \frac{1}{2}, $	b = -1
c)	m = 3	b = 0	d) $m = -\frac{1}{4}$,	<i>b</i> = 5


12. a) down 3 units, left 5 units
b) up 3 units, left 4 units
c) right 6 units
d) reflection in the *y*-axis

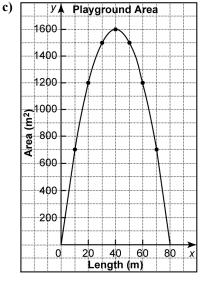
BLM 4-3 Section 4.1 Modelling With Quadratic Relations


1. a) quadratic



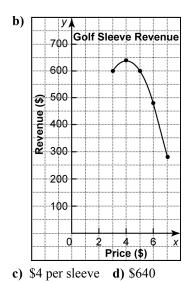

- 2. a) second differences are 8; quadratic.
 - **b**) first differences are 1; linear.
 - c) second differences are 2; quadratic.
 - d) first and second differences are different; neither linear nor quadratic.
- **3.** quadratic: **b**), **d**), **f**); all have a x^2 term.
- **4.** a) maximum; (10, 500)
 b) minimum; (6, 110)
 c) minimum; (11, 330)

5. a)	Time	Height
	(s)	(m)
	0	1000
	10	950
	20	800
	30	550
	40	200


c) Yes. The relation has a t^2 term.

Foundations for College Mathematics 11: Teacher's Resource Chapter 4 Practice Masters Answers

b) Yes, because the graph is a parabola.


7. a), b)	Length (m)	Width (m)	Perimeter (m)	Area (m ²)
	70	10	160	700
	60	20	160	1200
	50	30	160	1500
	40	40	160	1600
	30	50	160	1500
	20	60	160	1200
	10	70	160	700

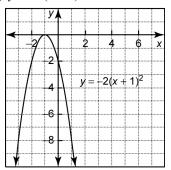
d) l = 40 m, w = 40 m

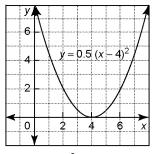
8. a)	Price (\$)	Number Sold	Revenue (\$)
	3	200	600
	4	160	640
	5	120	600
	6	80	480
	7	40	280

BLM 4-5 Section 4.2 The Ouadratic Relation $v = ax^2 + k$

- **1.** a) -1 < a < 0 b) a > 1 c) 0 < a < 1 d) a < -1
- 2. a) opens downward, vertically compressed, vertex at (0, 2)
 - **b**) opens upward, vertically stretched, vertex at (0, 0)
 - c) opens downward, vertically compressed, vertex at (0, -6)
 - d) opens upward, vertex at (0, 4)
 - e) opens downward, vertically stretched, vertex at (0, -5)
 - f) opens upward, vertically compressed, vertex at (0, 2)
 - g) opens upward, vertically stretched, vertex at (0, 4)
 - h) opens downward, vertically compressed, vertex at (0, -3)

3. a)
$$y = 3x^2$$
 b) $y = 0.5x^2 + 1$ c) $y = -2x^2 - 4$

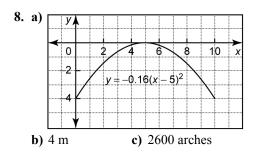

- **b**) **i**) second relation ii) first relation
 - c) i), ii) first relation
 - d) i), ii) second relation e) i), ii) second relation
 - f) i) first relation ii) second relation


b) B **c)** A 8. a) $y = 4x^2$ b) $y = 0.3x^2$ c) $y = 3x^2 + 4$ d) $y = -x^2 - 3$

BLM 4-6 Section 4.3 The Quadratic Relation $v = a(x-h)^2$

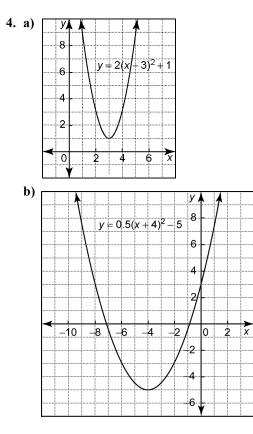
- **1.** a) h = 6, vertex is (6, 0)**b)** h = -5, vertex is (-, 0)c) h = -4; vertex is (-4, 0) d) h = 3; vertex is (3, 0)
- **2.** a) a = 1, h = -3 b) a = 1, h = 1 c) a = -1, h = -2**d**) a = 0.5, h = 4 **e**) a = -2, h = -1 **f**) a = 0.4, h = 6**g**) a = -1.5, h = -5 **h**) a = -3, h = 2
- 3. a) translated 1 unit right, vertically stretched by a factor of 2; a = 2, h = 1
 - **b**) translated 3 units left, reflected in the x-axis; a = -1, h = -3
 - c) translated 5 units left, vertically compressed by a factor of $\frac{1}{2}$; a = 0.5, h = -5
 - d) translated 4 units right, vertically stretched by a factor of 3, and reflected in the x-axis; a = -3, h = 4
- 4. a) $v = -2(x+1)^2$

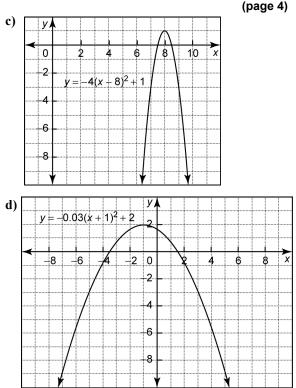
b)
$$y = 0.5(x-4)^2$$


- 5. a) $y = 2(x-3)^2$; its vertex is at (3, 0), the vertex of the first parabola is at (-2, 0).
 - **b**) $y = 8(x-5)^2$; its vertex is at (5, 0), the vertex of the second parabola is at (-2, 0).

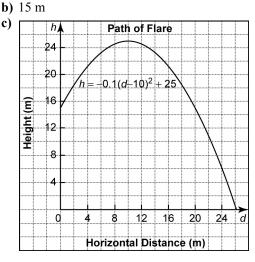
c) A

7


a)
$$y = -(x-4)^2$$
 b) $y = 0.6(x+2)^2$


c)
$$y = -2(x-6)^2$$
 d) $y = (x+10)^2$

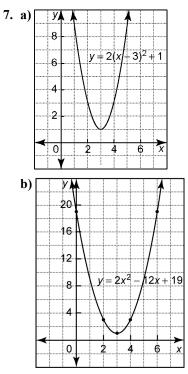
BLM 4-7 Section 4.4 The Quadratic Relation $v = a(x-h)^2 + k$


- **1.** a) i) (-1, 2) ii) positive b) i) (3, 4) ii) positive c) i) (1, -4) ii) negative d) i) (6, -3) ii) negative
- **2.** a) (2, 1), $y = -2(x-2)^2 + 1$ **b)** $(3, -1), y = 2(x + 3)^2 - 1$
 - c) $(4, 2), y = -0.5(x 4)^2 + 2$ d) $(-4, 3), y = 3(x + 4)^2 + 3$
- 3. a) (2, 4), opens upward, vertically stretched **b**) (-1, 3), opens downward, vertically compressed c) (3, 1), opens downward, vertically stretched
 - d) (-5, 2), opens upward, vertically stretched
 - e) (3, -2), opens downward, vertically compressed
 - **f)** (0, 1), opens upward, vertically stretched

5. A

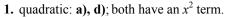
6. a) (10, 25) The maximum height of 25 m is reached when the flare has travelled 10 m horizontally.

7. a) (4, 33) **b)** 33 m c) 25 m


- d) The maximum height of 33 m is reached when the ball has covered a horizontal distance of 4 m.
- 8. a) $y = 2x^2$ b) $y = 3(x-5)^2 + 4$ c) $y = -0.5(x+4)^2 3$
- **9.** a) (21, 60 840)
 - **b**) When the price is increased 21 times, the maximum revenue of \$60 840 from room rentals will be reached.
 - c) \$156

BLM 4-9 Section 4.5 Interpret Graphs of Quadratic Relations

1.	a)	6 b)	7	c) -	9 d) –60)	
2.	a)	i) 3, −3	ii) –9	iii)	minimum	iv)	(0, -9)
	b)	i) 2, 4	ii) 16	iii)	minimum	iv)	(3, -2)
	c)	i) −1, 5	ii) 5	iii)	maximum	iv)	(2, 9)
	d)	i) none	ii) –5	iii)	maximum	iv)	(-2, -1)
3.	a)	В	b)	А	c) C		
4.	a)	С	b)	В	c) A		
5.	a)	(4, 96)	b)	4 s	c) 96	m	d) 12 m
6.	a)	60 m	b)	5 s	c) 40	m	d) 40 m
6.		60 m	b)	5 s		m	d) 40 m

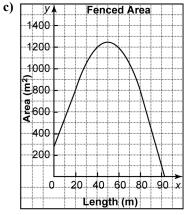

e) They are the same: both 20 m less than the maximum height.

c) The graphs are the same. The equations are in different forms but represent the same relation.

BLM 4-11 Chapter 4 Review

2. a)	t	h	
	0	1.5	
	1	21.5	
	2	31.5	
	3	31.5	
	4	21.5	
	5	1.5	

	h,		Fo	ot	bal	I P	ath		
	35	_ ł	1.=	-5	t ²	+ 2	5 <i>t</i> +	- 1.	5
	30	-	/	\sim					
Ê	25	- /							
Height (m)	20	-							
He	15	-/							
	10	$\frac{1}{1}$							
	-5	ł							
	0					1	6		\rightarrow_t
			1	Γin	ne	(s)			


b) 5.7 s

3. a), b

c) (2.5, 32.75); The ball reached its maximum height of 32.75 m after 2.5 s.

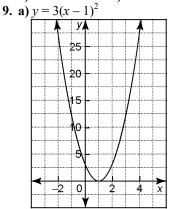
d)	The ball	was	thrown	from	a height	of 1.5 m.
----	----------	-----	--------	------	----------	-----------

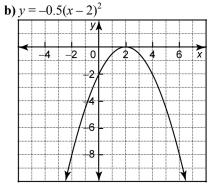
Length (m)	Width (m)	Perimeter (m)	Area (m ²)
80	10	100	800
70	15	100	1050
60	20	100	1200
50	25	100	1250
40	30	100	1200
30	35	100	1050
20	40	100	800

d) length 50 m, width 25 m

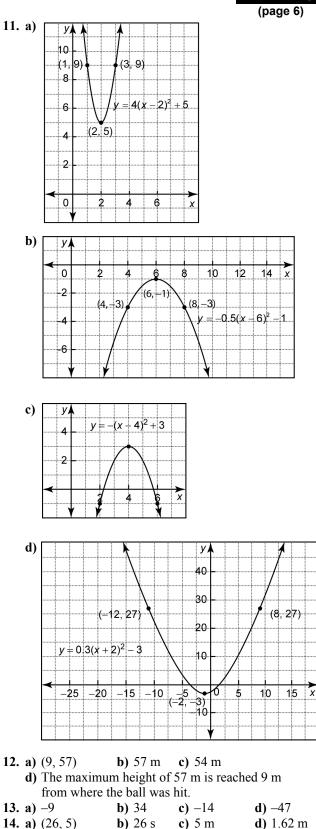
Copyright © 2007 McGraw-Hill Ryerson Limited

Foundations for College Mathematics 11: Teacher's Resource Chapter 4 Practice Masters Answers

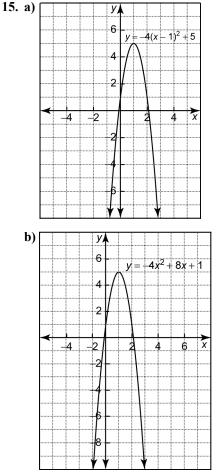

BLM 4-15


- 4. a) reflected in the x-axis, vertically compressed by a factor of 0.5
 - **b)** translated down 2 units
 - c) vertically stretched by a factor of 2. translated up 7 units
 - d) reflected in the x-axis, vertically stretched by a factor of 3, translated down 5 units
- 5. a) negative b) positive c) positive d) negative

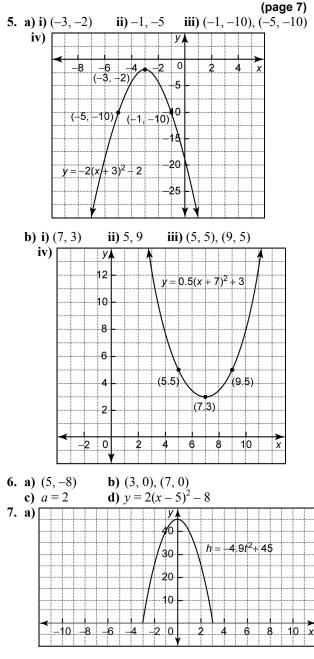
6. a)
$$y = -2x^2$$
 b) $y = 0.5x^2$


c)
$$y = 2x^2 - 3$$
 d) $y = -x^2 + 11$

7. Answers may vary. Sample answer: The expression is expressed as x - h so that *h* is the *x*-coordinate of the vertex.



- **10.** a) (-3, -1), positive **b)** (1, 2), positive
 - c) (-3, 3), negative
 - **d**) (1, -5), negative

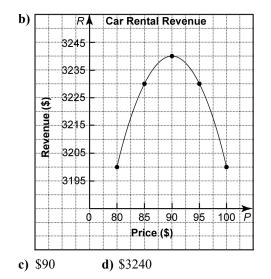

BLM 4-15

c) The graphs are the same. The equations are in different forms but represent the same relation.

BLM 4-12 Chapter 4 Practice Test

- **1.** a) F b) T c) F d) T e) F f) F
- 2. Yes. If each first difference differs by -3 from the one before it, then the second differences would all be -3. A constant second difference means the relation is quadratic.
- **3.** a) vertical stretch by a factor of 2, a translation 3 units right
 - b) translation 4 units left and 1 unit down
 - c) vertical compression by a factor of 0.5, a reflection in the *x*-axis, a translation 3 units up
 - **d)** vertical compression by a factor of 0.3, a translation 2 units right and 1 unit down
- **4.** a) a = 1, h = 2, k = 2; vertex at (2, 2)
 - **b**) a = -0.5, h = -3, k = -1; vertex at (-3, -1)
 - c) a = -1, h = -1, k = 1; vertex at (-1, 1)
 - **d)** a = -2, h = -4, k = 3; vertex at (-4, 3)

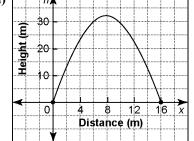
reflected in the *x*-axis, vertically compressed by a factor of 4.9, translated up 45 units


b) 49 m **c)** 19.6 m

9.

8. a)
$$y = -0.086(x - 22)^2 + 42$$
 b) 44.1 m

a)	Price (\$)	Cars Rented	Revenue (\$)
	80	40	3200
	85	38	3230
	90	36	3240
	95	34	3230
	100	32	3200



BLM 4-13 Chapter 4 Test

- **1.** D **2.** D **3.** B **4.** A **5.** C
- 6. quadratic: a), d); a) has an x² term in the equation;
 d) has constant second differences
- 7. a) opens upward, vertically stretched by a factor of 2, translated 2 units left
 - **b)** opens downward, vertically compressed by a factor of 0.5, translated 3 units down
 - c) opens upward, translated 3 units right and 8 units up
 - d) opens downward, vertically stretched by a factor of 3, translated 1 unit right and 2 units down

8. a) first relation b) both are on the y-axis c) second relation d) both are same distance 9. a) both are on the x-axis b) both are same distance c) first relation d) second relation 10. a) $y = 1.5(x-10)^2 + 2$ b) 3.5 m c) 2 m; 10 m 11. a) h

- **b)** (8, 32); The maximum height of 32 m occurs 8 m from the base of the arch.
- **c)** 14 m
- **d)** Yes. The tunnel is 16 m wide and 32 m high; the 8 m by 23 m crate will fit through the tunnel.