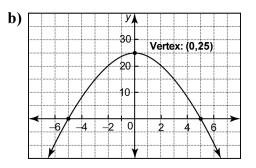

BLM 5–9 (page 1)


Section 5.5 The *x*-Intercepts of a Quadratic Relation

1. Find the *x*-intercepts of each quadratic relation.

- b) $\frac{y}{10}$ $\frac{10}{-4}$ $\frac{$
- **2.** Find the zeros of each quadratic relation.

3. Find the zeros of each quadratic relation.

a) y = (x - 1)(x + 2)b) y = 3(x + 7)(x - 5)c) y = -2x(x - 6)d) y = -(x + 6)(x - 9)e) y = 4(x + 8)(x - 2)f) y = 6(x - 6)(x + 6)

- 4. Find the zeros by factoring. Check by graphing.
 a) y = x² + 8x + 15
 - **b)** $y = x^2 2x 8$ **c)** $y = 2x^2 - 18$ **d)** $y = 3x^2 - 12x - 36$ **e)** $y = -x^2 + 4x + 5$ **f)** $y = 6x^2 - 24$
- 5. Find the zeros by factoring. a) $y = 0.5x^2 + 2x - 6$ b) $y = 1.5x^2 - 9x - 24$
- 6. Which relation has more than one *x*-intercept? How do you know?

a)
$$y = -3(x+2)^2 + 1$$

b) $y = 2(x+5)^2 + 2$

Date: _____

Name:

- 7. Given each relation in vertex form, express the relation in standard form and in intercept form.
 - a) $y = (x + 3)^2 1$ b) $y = -2(x + 1)^2 + 32$ c) $y = 4(x - 3)^2 - 100$
- 8. A rock was thrown from a cliff. Its path can be modelled by the relation $h = -0.5d^2 + d + 12$, where *h* is the height of the rock above the ground and *d* is the horizontal distance, both in metres.
 - a) How high is the cliff?
 - b) Write the relation in intercept form.
 - c) Determine the zeros of the relation.
 - **d)** At what horizontal distance did the rock hit the ground?
 - e) Graph the relation.

- 9. A soccer ball was kicked from ground level. It followed a path given by the relation $h = -0.25d^2 5d$, where *h* is the height of the ball above the ground and *d* is the horizontal distance, both in metres.
 - a) Write the relation in intercept form.
 - **b)** Find the zeros of the relation.
 - c) How far from the kicker did the ball land? Explain.

