Date:

Chapter 5 Review

5.1 Expand Binomials, pages 234-341

- 1. Expand and simplify. a) (x+6)(x-2)b) (x-3)(x+3)c) (3x+4)(2x-1)d) $(2x+1)^2$
- **2.** Write an expression, in simplified form, for the area of the figure.

- 5.2 Change Quadratic Relations From Vertex Form to Standard Form, pages 242-247
- **3.** Write each relation in standard form.
 - a) $y = 3(x-6)^2 + 4$ b) $y = -2(x+1)^2 - 3$ c) $y = 1.5(x-4)^2 + 1$ d) $y = -0.6(x+2)^2 - 5$
- **4.** Find the *y*-intercept of each relation in question 3.
- 5. For each quadratic relation, write an equation in standard form.
 a) a = 3, vertex at (1, 4)
 b) a = -6, minimum of 10 at x = 4

BLM 5–13 (page 1)

5.3 Factor Trinomials of the Form $x^2 + bx + c$, pages 248-255

- 6. Factor.
 - a) $x^2 13x$ b) $x^2 - 9$ c) $x^2 + 11x + 30$ d) $x^2 + 2x - 48$ e) $x^2 - 11x + 28$ f) $x^2 + 12x + 27$ g) $-2x^2 + 8x$ h) $x^2 + 14x + 45$
- 7. The area of a rectangular garden can be represented by the relation $A = x^2 + 9x + 14$.
 - a) Find expressions for the length and the width of the garden.
 - **b)** If the area of the garden is 84m², find its dimensions.

5.4 Factor Trinomials of the Form $ax^2 + bx + c$, pages 256-263

- 8. Factor fully. a) $2x^2 + 4x - 48$ b) $-3x^2 + 18x + 21$ c) $-4x^2 - 20x + 96$ d) $0.5x^2 - 0.5$ e) $-2x^2 + 24x - 54$ f) $10x^2 + 30x - 280$
- 9. The height of a water balloon thrown from the top of a building can be modelled by the relation $h = -5t^2 + 15t + 20$, where *h* is the height in metres and *t* is the time after the balloon was thrown in seconds.
 - a) Factor the expression for the height of the water balloon.
 - **b)** What is the height of the balloon after 4 s? Explain.

Date:

Name:

5.5 The x–Intercepts of a Quadratic Relation, pages 264-275

- 10. Find the zeros of each quadratic relation.
 a) y = x² 7x
 - **b)** $y = x^2 9$ **c)** $y = 3x^2 - 6x - 144$
- 11. Write each quadratic relation in standard form, then find the zeros. a) $y = 2(x + 1)^2 - 50$ b) $y = -3(x - 1)^2 + 48$
- 12. The path of a flare can be modelled by the relation $h = -4.9t^2 + 29.4t$, where *h* is the height in metres and *t* is the time in seconds.
 - a) Write the relation in intercept form.
 - b) Use the intercept form. Make a table of values for times from 0.5 s to 3.5 s in 0.5 s increments.
 - c) Use the intercept form of the relation to find the zeros.
 - d) Graph the relation.
 - e) After how long did the flare hit the ground?

BLM 5–13 (page 2)

- 5.6 Solve Problems Involving Quadratic Relations, pages 276-285
- 13. Find the zeros and the minimum or maximum for each relation. a) $y = x^2 + 2x - 24$ b) $y = 2x^2 - 32$
 - c) $y = -3x^2 12x + 63$
 - **d**) $y = -4x^2 + 8x + 60$
- **14.** a) Write an expression for the area of this rectangle.

- **b)** For what value of x does the rectangle have area 594 m^2 ?
- 15. a) Write three different relations, in standard form, with zeros at x = 3 and x = -5.
 - **b)** Graph each relation from part a).
 - c) Write a relation with the same zeros that passes through the point (-1, 4).