BLM 7-4

Section 7.2 Zero and Negative Exponents

1. Write each expression as a power with a negative exponent.

a)
$$\frac{1}{6^3}$$
 b) $\frac{1}{4^2}$
c) $\frac{1}{9^8}$ d) $\frac{1}{8^2}$

2. Write each power as an expression with a positive exponent.

a) 3 ⁻⁴	b) 7 ⁻⁶
c) 2^{-1}	d) 5 ⁻⁶

3. Evaluate. Express your answers as whole numbers or fractions.

a) 3 ²	3^{-2}
b) 5^3	5^{-3}
c) 10^4	10^{-4}
d) $(-3)^3$	$(-3)^{-3}$

4. Evaluate.

a)
$$(-10)^{-2}$$
 b) $(-4)^{-3}$
c) $\left(\frac{1}{4}\right)^{-4}$ **d)** $\left(\frac{1}{3}\right)^{-3}$

5. Write each expression as a single power. Then, evaluate.

a)
$$8^4 \times 8^{-2}$$
 b) $\frac{4^2}{4^3}$
c) $\left(\frac{1}{3}\right)^{-5} \times \left(\frac{1}{3}\right)^7$ d) $\frac{1}{(3^2)^2}$
e) $(2^{-5})^2$ f) $\frac{5^4}{5^{-2}}$
g) $\left(\frac{1}{4}\right)^{-5} \left(\frac{1}{4}\right)^3$ h) $(-5)^4 (-5)^{-2}$
i) $(4^{-3})^2$ j) $\left(-\frac{1}{3}\right)^5 \left(-\frac{1}{3}\right)^{-7}$

- 6. A radioactive material decays by 2⁻¹ of its original mass in 8 h. How much of a 200-mg sample would remain after
 a) 1 day?
 - **b)** 3 days?
- **7.** Refer to question 6. Would the amount of radioactive material ever reach 0 mg? Explain.
- 8. Use each indicated base to write each numerator and denominator as a power. Then, simplify. Express your answer as a power with a whole number base.

a)
$$\frac{625}{125}$$
 base 5
b) $\frac{256}{16}$ base 4
c) $\frac{6561}{243}$ base 3
d) $\frac{343}{49}$ base 7

9. Use examples to explain the meaning of a power with exponent zero.