

Chapter 7 Review

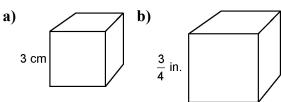
7.1 Exponent Rules, pages 356-363

1. Write as a single power and then evaluate.

a)
$$5^3 \times 5$$

b) $4^9 \div 4^7$
c) $(2^4)^2$
d) $(-3)^2 \div (-3)^3$
e) $\left(\frac{2}{3}\right)^2 \times \left(\frac{2}{3}\right)^2$
f) $\left(\left(-\frac{1}{4}\right)^2\right)^2$

2. Calculate the volume of each cube using the formula $V = s^3$.



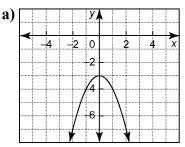
7.2 Zero and Negative Exponents, pages 364-371

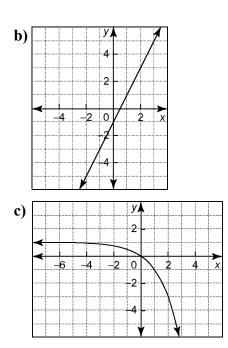
3. Evaluate. Express each answer as a whole number or a fraction.

a)
$$((-3)^2)^0$$
 b) 2^{-3}
c) 3^{-2} d) $5^{-2} \times 5^3$
e) $(4^{-1})^{-2}$ f) $\frac{3}{2^{-4}}$
g) $\frac{3^{-2}}{3^{-4}}$ h) $(5^{-1})^2$

7.3 Investigate Exponential Relationships, pages 372-381

4. Identify each relation as linear, quadratic, or exponential.

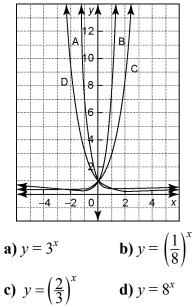




5. The value of an investment doubles every 8 years. Today, Armin invested \$25 000. How much money will he have after 8 years? after 16 years? after 40 years?

7.4 Exponential Relations, pages 382-394

6. Identify which graph represents each relation.



BLM	7–13	
(page 2)		

7. The population, *P*, of a small community can be modelled by the equation $P = 12\ 000(1.031)^t$, where *t* is the time in

P = 12000(1.051), where *t* is the time in years after 2005.

- a) Sketch the graph of this relation.
- **b**) What was the population in 2005?
- c) What will the population be in 2010?
- **d)** In what year will the population reach 16 800?
- e) What assumption must be made for your answer to part d) to be accurate?

7.5 Model Exponential Growth, pages 395-405

8. As the sun starts to set, the distance Hong can see decreases exponentially. The table shows this distance every half hour starting at 7:00 P.M. Let t = 0 correspond to 7:00 P.M.

Time (h)	t	Distance (ft)
7:00	0.0	97.0
7:30	0.5	86.0
8:00	0.1	76.0
8:30	1.5	68.0
9:00	0.2	60.0
9:30	2.5	53.0
10:00	0.3	47.0
10:30	3.5	44.2

- a) Use a graphing calculator. Make a scatter plot comparing *t* to Distance. Find the equation of the exponential curve of best fit. Sketch the graphing calculator display.
- **b)** Use the equation from part a) to determine how far Hong can see at 11:30 P.M.
- c) Would you expect this trend to continue? Why or why not?

- 9. The population at an elementary school has grown exponentially over the past 3 years according to the relation $P = 775(1.037)^t$, where *P* is the population and *t* is the time in years (t = 0 represents 3 years ago).
 - a) What was the population of the school 3 years ago?
 - **b)** What is the population of the school today?
 - c) When will the school reach its capacity of 1000 students?

7.6 Solve Problems Involving Exponential Growth and Decay, pages 406-413

10. The half-life of a radioactive material is 8 min. The mass, *M*, present in a sample can

be modelled by the relation $M = M_0 \left(\frac{1}{2}\right)^{\left(\frac{t}{8}\right)}$

where t is the time in minutes and M_0 is the initial mass in milligrams.

- a) How much of a 75-mg sample would be present after 24 min?
- **b)** How much of a 75-mg sample would be present after 1.5 h?
- c) How long would it take for the 75 mg sample to decay to 0.0025 mg?
- **11.** The fish population of a stocked pond can be

modelled by the relation $A=A_0(2)^{\overline{50.25}}$, where A_0 is the fish population now and t is the time in years.

- a) If the pond is stocked with 30 000 fish today, how many fish will there be in 10 weeks time?
- **b)** How many fish will be in the pond 46 weeks from the start of the measurements?