1.1

Student Text Pages

6–15

Suggested Timing

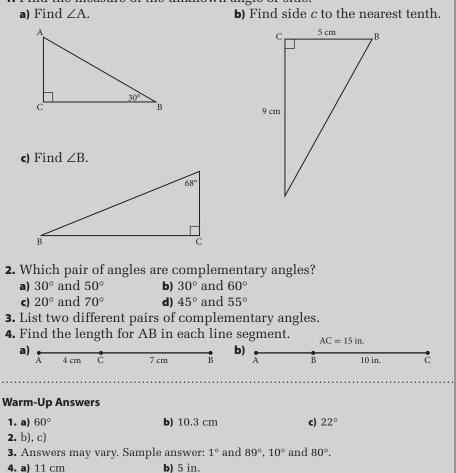
70 min

Tools

- The Geometer's Sketchpad®
- computers
- calculators
- Optional
- pencil and paper
- rulers
- protractors

Related Resources

BLM 1-3 Section 1.1 Revisit the Primary Trigonometric Ratios BLM T-2 The Geometer's Sketchpad®3 BLM T-3 The Geometer's Sketchpad®4


Revisit the Primary Trigonometric Ratios

Link to Prerequisite Skills

Students should complete Prerequisite Skills questions 2, 4, 8, and 10 before proceeding with this section.

Warm-Up

1. Find the measure of the unknown angle or side.

Teaching Suggestions

Warm-Up

• Write the Warm-Up questions on the board or on an overhead. Have students complete the questions independently. Then, discuss the solutions as a class.

Section Opener

• Begin with a brief discussion of the photograph. You may want to generate a discussion about careers that use trigonometry.

Investigate

- Have students work in pairs to complete the Investigate. This allows them to discuss their results.
- Emphasize the importance of ensuring that the sides are labelled correctly with respect to the angle.
- You may want to include a memory map for using the primary trigonometric ratios.
- You may want to supply a copy of the table in question 1 for students to complete.
- Draw 3-4-5 and 9-12-15 triangles on dot paper or grid paper if *The Geometer's Sketchpad*[®] is not available.
- Memory aid diagrams are useful for these laws.

Triangle	AB	AC	BC	∠A	BC AB	sin A	AC AB	cos A	BC AC	tan /
ABC #1	5 cm	4 cm	3 cm	37°	0.6	0.6	0.8	0.8	0.75	0.75
ABC #2	15 cm	12 cm	9 cm	37°	0.6	0.6	0.8	0.8	0.75	0.75
5. no 6. a) The 7. They a 8. sin A =		1	an $A = -$	<u>a</u>	b) si	$n B = \frac{4}{5}$; cos B	$=\frac{3}{5}$; ta	n B = -	$\frac{4}{3}$

Examples

- Have students work through the Examples as a class before proceeding to the Discuss the Concepts.
- Emphasize that the longest side of a right triangle is the hypotenuse. Have students always label the sides before finding the angles in trigonometric ratios.
- Make sure that their calculators are in degree mode: Press MODE. Ensure that DEGREE is selected.
- You may want students to write the problems and their solutions on a chart to use as a reference or study guide.
- You might want to evaluate the ratios to four decimal places before finding the angle measure as in Example 5:

$$\cos A = \frac{17}{22}$$

$$\cos A \doteq 0.7727$$

$$\angle A \doteq \cos^{-1}(0.7727)$$

$$\angle A \doteq 39.4^{\circ}$$

Key Concepts

• Have the students make a mind map for the key concepts.

Common Errors

- Some students may label sides incorrectly, especially the adjacent and opposite ones.
- \mathbf{R}_{x} Have students draw an arrow from the angle to the opposite side and a curved arrow to the adjacent side. Have them label the sides accordingly.

Accommodations

Memory—place SOH-CAH-TOA posters in a few places around the classroom. Include a vertical version with the associate words beside the letters.

> Sine Opposite Hypotenuse

Visual—have three students make a large right triangle in the classroom, using long pieces of string for the sides. The students each hold a letter A, B, or C. Choose an angle and have a student take a card with one of the words *opposite*, *adjacent*, or *hypotenuse* and stand in the correct position along one of the sides.

Perceptual—provide a screen capture of *The Geometer's Sketchpad*[®] icons next to where they appear in the written instructions.

Gifted and Enrichment—have students construct several non-right triangles to help verify that the trigonometric ratios only apply to right triangles

Language—provide a partner to assist with reading the instructions for the Investigate

Discuss the Concepts

• Have students come up with a general conclusion. (The sine of an angle is equal to the cosine of its complementary angle.)

Discuss the Concepts Suggested Answers (page 13)

- **D1.** It is an acronym for remembering the numerator and denominator of the trigonometric ratios sine, cosine, and tangent.
- **D2.** No; need two sides, or one side and one of the acute angles.
- **D3.** $\sin 40^\circ = \cos 50^\circ$ is true. For any $\angle A$ less than 90° , the statement $\sin A = \cos(90^\circ A)$ is true.

Practise (A)

• Encourage students to refer to the Investigate and the Examples before asking for assistance.

Apply (B)

- Not all questions should be assigned. You may want to assign the even numbered or every second part in each exercise.
- For questions 10 to 12, refer students to Warm-Up question 4.

Extend (C)

- Assign the Extend questions to students who are not being challenged by the questions in Apply.
- For **question 13**, remind students of the similar triangles property (i.e., ∠A is equal to ∠B because of the parallel lines).
- For **question 14**, students can add the area of the rectangle to the area of the triangle, or use the formula for the area of a trapezoid:

Area of trapezoid = $\frac{1}{2}h(a + b)$, where a and b are the lengths of the parallel sides and h is the height.

Mathematical Process Expectations

Process Expectation	Questions
Problem Solving	10–14
Reasoning and Proving	n/a
Reflecting	n/a
Selecting Tools and Computational Strategies	1–14
Connecting	n/a
Representing	n/a
Communicating	n/a

Ongoing Assessment

• While students are working, circulate and see how well each person works. This may be an opportunity to begin observing and recording individual students' learning skills.

Extra Practice

• You may wish to use **BLM 1-3 Section 1.1 Revisit the Primary Trigonometric Ratios** for remediation or extra practice.