Date:

Working with Very Large and Very Small Numbers

• Very large and very small numbers can be expressed in scientific notation. In general, a number is expressed in scientific notation as: $a \times 10^n$, where $1 \le |a| \le 9$ and *n* is a positive or negative integer. To enter a number into your calculator in scientific notation, use the exponent key. What does the exponent key look like on your calculator? Is it **EE** or **EXP**?

a means all positive values of *a*. For any value of *a*, take its absolute value. Example: |-6| = 6

BLM MS-3

Do not use the 10^x key for scientific notation. It is used in calculations involving exponential • and logarithmic equations.

Example 1

The planet Pluto is approximately 5 913 000 000 km from the Sun. Express this number in scientific notation. How would you enter this number into your calculator?

Solution

Express a as a decimal number that is greater than or equal to 1 and less than 10. Therefore, a = 5.913. The number of decimal places from the decimal point to the end of the original number is 9.

Therefore, n = 9.

In scientific notation, the distance between Pluto and the sun is 5.913×10^9 . The key sequence is 5.913 EE 9 or 5.913 EXP 9.

Example 2

Round 0.000 981 7 to five decimal places. Write this new number in scientific notation. How would you enter this number into a calculator?

Solution

Round to five decimal places: $0.000\ 981\ 7 = 0.000\ 98$. Use scientific notation: 9.8×10^{-4} . Note that the exponent is a negative value. This is because the original number is less than 1.

The key sequence is 9.8 EE -4 or 9.8 EXP -4.

Questions

1. Round each number to the number of digits indicated. Then, express each new number in scientific notation.

a) 45 600 (to 1 decimal place)	d) 0.007 1185 (to 6 decimal places)
b) 0.5512 (to 3 decimal places)	e) 184 927 155 (to 5 decimal places)

c) 0.000 047 81 (to 6 decimal places)

f) -571 204 000 (do not round)

2. Express each number in scientific notation as a decimal number.

a) 6.04×10^{-12}	c) 1.87×10^{10}	e) -6.591×10^{-1}
b) 3.87×10^4	d) -9.045×10^{-7}	f) 2.419×10^2

3. A calculator displays each of the following numbers after you perform a calculation. How should you copy each number into your notebook as a decimal number? c) -6.27^{05} a) 294.256¹¹

u) 20 1.200	6) 0.21
b) -3.648 ⁻⁰⁸	d) 9.501 ⁻¹⁰

Copyright © 2010 McGraw-Hill Ryerson Limited 978-007090899-4

BLM MS-3 (continued)

• Using the calculator's exponent key allows you to easily perform arithmetic operations with very large and very small numbers.

Example

A computer is being designed to process 2 100 000 bits of data in 0.000 005 50 s. At what rate can this computer process data?

Solution

Express the rate of processing data as a ratio of bits of data to seconds of processing time. Therefore,

$$\frac{2\ 100\ 000}{0.000\ 005\ 50} = \frac{2.1 \times 10^6}{5.5 \times 10^{-6}}$$
$$= \left(\frac{2.1}{5.5}\right) \times 10^{\left[6 - (-6)\right]}$$
$$= 0.38\overline{18} \times 10^{12}$$
$$= 3.8\overline{18} \times 10^{11}$$

With a calculator, solve in one step, using the exponent key. The key sequence is

2.1 EE 6 ÷ 5.5 EE –6 or 2.1 EXP 6 ÷ 5.5 EXP –6. The answer generated by the calculator is 3.818181818¹¹, or $3.8\overline{18} \times 10^{11}$.

may require you to use brackets around the operations in the numerator and in the denominator.

Note that your calculator

Therefore, the computer can process data at a rate of $3.8\overline{18} \times 10^{11}$.

Ouestions

4. Calculate. Express your answers in scientific notation.

 $\mathbf{d}) \frac{\left(8.4 \times 10^{25}\right)}{\left(3.2 \times 10^{8}\right)}$ $\mathbf{e}) \frac{\left(3 \times 10^{-5}\right) \left(8 \times 10^{-3}\right)}{\left(4 \times 10^{-9}\right) \left(1.2 \times 10^{8}\right)}$ Note that if you use a calculator for part e), you will need to use brackets in the denominator. a) $(2 \times 10^{-6})(9 \times 10^{-10})$ **b**) $(4.6 \times 10^{-12})(7.2 \times 10^8)$ c) $\frac{(1.7 \times 10^5)}{(5.1 \times 10^{11})}$ **f**) $(1.2 \times 10^7)^3$

Copyright © 2010 McGraw-Hill Ryerson Limited 978-007090899-4

