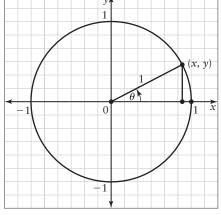

Chapter 1 Trigonometric Ratios

1.1 Sine, Cosine, and Tangent of Special Angles

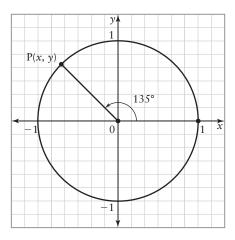

KEY CONCEPTS

• Exact trigonometric ratios for 30°, 45°, and 60° angles can be determined using special triangles.

- Any point (x, y) on a unit circle can be joined to the origin to form a radius 1 unit long.
- A rotation angle θ , in standard position, is formed by proceeding counterclockwise from the initial arm on the positive x-axis to the terminal arm through (x, y).
- For any rotation angle, the reference angle is the acute angle between the terminal arm and the *x*-axis.
- Given a point (x, y) on a unit circle, $\cos \theta = x$, $\sin \theta = y$, and $\tan \theta = \frac{y}{x}$.

Example

Determine the exact values of the primary trigonometric ratios for 135°.


Solution

The measure of the reference angle is $180^{\circ} - 135^{\circ}$, or 45° . Use the special triangles to determine the sine and cosine ratios for the reference angle.

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}}$$
 $\cos 45^{\circ} = \frac{1}{\sqrt{2}}$ $\tan 45^{\circ} = 1$

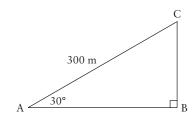
Since the terminal arm of a 135° angle in standard position is in quadrant II, the *x*-coordinate of P is negative.

$$\sin 135^\circ = \frac{1}{\sqrt{2}} \quad \cos 135^\circ = -\frac{1}{\sqrt{2}} \quad \tan 135^\circ = -1$$

A

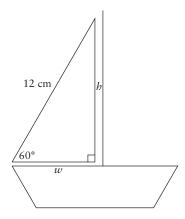
Unless otherwise specified, give all answers as exact values.

- 1. Determine the sine, cosine, and tangent ratios for each angle.
 - **a)** 30°
- **b)** 45°
- c) 60°
- 2. a) Copy and complete the table.

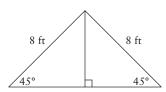

	$\sin \theta$	
θ	Exact	Calculator
0°		
30°		
45°		
60°		
90°		

- **b)** Compare the exact values of the trigonometric ratios to the values from the calculator.
- 3. Repeat question 2 for $\cos \theta$ and $\tan \theta$.
- **4. a)** What reference angle should be used to find the primary trigonometric ratios for 150°?
 - **b)** Determine the primary trigonometric ratios for 150°.
- **5.** a) Draw a 225° angle in standard position on a unit circle.
 - **b)** What reference angle should be used to find the primary trigonometric ratios for 225°?
 - c) Find the primary trigonometric ratios for 225°.
- **6. a)** Draw a 240° angle in standard position on a unit circle.
 - **b)** State two other angles that have the same reference angle.
 - c) Find the primary trigonometric ratios of 240°.
 - **d)** State the primary trigonometric ratios for the angles in part b).

- 7. Use Technology Use geometry software to construct a circle with radius 1 unit. Label the origin O. Construct and label point B on the circle in quadrant I. Determine the coordinates of point B.
 - a) Construct segment OB. Determine the length of OB. Find the measure of / AOB.
 - b) Drag B until $\angle AOB = 30^{\circ}$. Record the coordinates of point B, the length of OB, and the measure of $\angle AOB$.
 - c) Reflect B and OB in the *x*-axis. Record the coordinates of B' and the coordinate distance OB'.
 - d) Construct segment BB'. Determine the coordinate distance BB'. What type of triangle is △OBB'?
 - e) Construct the midpoint, D, of BB'. Then, construct segment OD. Determine the coordinate distances OD and DB.
 - f) How do the distances OD and DB compare to the coordinates of B? How do the distances OD and DB' compare to the coordinates of B'?
 - **g)** Drag point B around the unit circle. What do you notice?


B

8. Devan started at point A and walked 300 m across a park to a store at point C. Sonal started at point A and walked east to point B and then walked north to the store at point C.



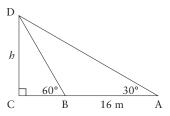
- a) Determine the distance AB.
- **b)** Determine the distance BC.

9. Doug designed a sail for a model sailboat. The sail is in the shape of a right triangle.

- a) Determine the height, h, of the sail.
- **b)** Determine the width, w, of the sail.
- **10.** Alicia is on an overnight camping trip. At the front of her tent, the distance from the top of the tent to the ground on either side is 8 ft.

- a) Determine the height of Alicia's tent.
- b) Determine the width of the floor of her tent.
- ★11. A 3-m long brace is placed against a wall so the bottom of the brace makes an angle of 60° with the ground.
 - a) Draw a diagram to represent this situation.
 - **b)** How far up the wall is the top of the brace?
 - **12.** A 4-m long ramp is placed against a wall. The ramp makes an angle of 30° with the ground. How far from the wall is the bottom of the ramp?

- 13. Boat A is 5 km north of a marina. Boat B is 5 km east of the marina.
 - a) Determine the distance between the two boats.
 - **b)** Describe an alternative method that can be used to solve this problem.
- ★ 14. A patio in the shape of a regular hexagon has side lengths 4 m. Determine the area of the patio.
 - **15. Use Technology** Use geometry software to construct a circle with radius 1 unit. Construct point A on the circle in quadrant I. Construct a segment joining A to the origin, O, to form angle θ in standard position. Determine the coordinates of A.
 - a) Calculate the sine, cosine, and tangent ratios of $\angle \theta$, using x and y.
 - **b)** Drag point A around the circle. What do you notice?
- **★16.** Determine the exact value of $\cos 30^{\circ} \times \sin 240^{\circ} + \sin 330^{\circ}$.


 \mathbf{C}

17. Determine all the possible measures of θ , where $0^{\circ} \le \theta \le 360^{\circ}$.

a)
$$\cos \theta = \frac{\sqrt{3}}{2}$$
 b) $\sin \theta = \frac{1}{2}$

b)
$$\sin \theta = \frac{1}{2}$$

18. Determine h.

- **19.** Given $\sin \theta = \frac{y}{r}$ and $\cos \theta = \frac{x}{r}$, show that $\frac{\sin \theta}{\cos \theta} = \tan \theta$.
 - **20.** Given $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, and $x^2 + v^2 = r^2$, show that $\sin^2\theta + \cos^2\theta = 1$.