KEY CONCEPTS

• Exactly two angles between 0° and 360° have the same sine ratio.

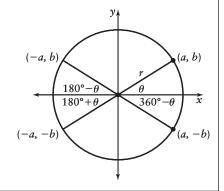
For example, $\sin \theta = \sin (180^{\circ} - \theta) = \frac{b}{r}$

• Exactly two angles between 0° and 360° have the same cosine ratio.

For example, $\cos \theta = \cos (360^{\circ} - \theta) = \frac{a}{r}$

• Exactly two angles between 0° and 360° have the same tangent ratio.

For example, $\tan \theta = \tan (180^{\circ} + \theta) = \frac{b}{a}$



Example

Given $\cos \theta = \frac{4}{5}$, determine θ , where $0 \le \theta \le 360^{\circ}$. Then, determine $\sin \theta$ and $\tan \theta$.

Solution

Determine the measure of angle θ in quadrant I for which $\cos \theta = \frac{4}{5}$.

$$\cos \theta = \frac{4}{5}$$

$$\angle \theta = \cos^{-1} \left(\frac{4}{5}\right)$$

$$= 36.8698...^{\circ}$$

$$= 36.9^{\circ}$$

The cosine ratio is positive in quadrants I and IV, so there is another angle for

which $\cos \theta = \frac{4}{5}$ in quadrant IV.

$$\angle \theta = 360^{\circ} - 36.9^{\circ}$$

= 323.1°

Given $\cos \theta = \frac{4}{5}$, the angle θ is approximately 37° or 323°.

If $\cos \theta = \frac{4}{5}$, x = 4 and r = 5. Determine y.

$$r^2 = x^2 + y^2$$

$$5^2 = (4)^2 + y^2$$

$$25 = 16 + y^2$$

$$9 = y^2$$

$$\pm 3 = y$$

Write the sine and tangent ratios for $\angle \theta$.

$$\sin \theta = \pm \frac{3}{5} \qquad \tan \theta = \pm \frac{3}{4}$$

A

Unless specified otherwise, all angles are between 0° and 360°.

- 1. Use a calculator to calculate each pair of ratios. Round decimal answers to four decimal places.
 - a) sin 58°, sin 122°
 - **b)** cos 117°, cos 243°
 - c) tan 238°, tan 58°
 - d) sin 310°, sin 230°
 - e) cos 82°, cos 278°
 - f) tan 266°, tan 86°
 - **g)** sin 65°, sin 115°
 - h) tan 109°, tan 289°
- 2. What do you notice about each pair of ratios in question 1? Explain.
- 3. Use a calculator to evaluate each ratio to four decimal places. Determine a second angle with the same ratio.
 - a) sin 89°
 - **b)** cos 335°
 - **c)** sin 132°
 - **d)** tan 140°
 - e) cos 155°
 - **f)** tan 305°
 - **g)** cos 307°
 - **h)** sin 13°
- 4. The coordinates of a point on the terminal arm of an angle θ are given. Determine the primary trigonometric ratios for θ . Round decimal answers to four decimal places.
 - a) A(5, 3)
- **b)** B(-4, 7)
- c) C(-6, -2)
- **d)** D(2, -1)
- **e)** E(10, 3)
- f) F(-5, -7)
- g) G(-8, 6)
- h) H(-1, -2)

- 5. Use a calculator to determine the primary trigonometric ratios for each angle. Round decimal answers to four decimal places.
 - a) 80°
 - **b)** 110°
 - c) 200°
 - **d)** 324°
 - **e)** 47°
 - **f**) 192°
 - **g)** 217°
 - h) 345°
 - i) 13°
 - i) 270°
- **6.** Find the values of θ , where $0^{\circ} \le \theta \le 360^{\circ}$.
 - a) $\sin \theta = \frac{\sqrt{3}}{2}$
 - **b)** $\cos \theta = \frac{1}{\sqrt{2}}$
 - c) $\tan \theta = \sqrt{3}$
 - **d)** $\sin \theta = 1$
 - e) $\cos \theta = \frac{\sqrt{3}}{2}$
 - **f**) $\tan \theta = 1$

- ★7. Determine two angles between 0° and 360° that have a sine ratio of $\frac{\sqrt{3}}{2}$. Do not use a calculator.
 - **8.** Use a diagram to determine two angles between 0° and 360° that have a cosine ratio of $-\frac{1}{2}$. Do not use a calculator.
 - 9. The tangent ratio of each of two angles between 0° and 360° is $-\frac{1}{\sqrt{3}}$. Without using a calculator, determine the angles.
 - **10.** Two angles between 0° and 360° have a tangent ratio of -1. Without using a calculator, determine the angles.

- 11. The point T(3, 4) is on the terminal arm of $\angle B$ in standard position.
 - a) Draw and label a diagram.
 - b) Explain how you would determine the primary trigonometric ratios for $\angle B$.
 - c) Determine the three primary trigonometric ratios for $\angle B$.
 - d) Explain how you would determine the measure of $\angle B$.
 - e) Determine the measure of $\angle B$ to the nearest degree.
 - f) How would the answer for parts a),c), and e) change if point T was reflected in the x-axis?
 - g) How would the answer for parts a), c), and e) change if point T was reflected in the *y*-axis?
- 12. Consider an angle, $\angle C$, that lies in quadrant III, such that tan C = 0.4663.
 - a) Draw a diagram to represent this situation.
 - b) Determine the measure of $\angle C$ to the nearest degree. Explain how you determined the measure of $\angle C$.
- 13. Use a calculator to find the values of θ to the nearest degree, where $0^{\circ} \le \theta \le 360^{\circ}$.
 - **a)** $\sin \theta = 0.7312$
- **b)** $\cos \theta = 0.4538$
- **c)** $\tan \theta = -1.7321$
 - **d)** $\sin \theta = 0.9534$
- **e)** $\cos \theta = 0.8862$
- **f**) $\tan \theta = 1$
- **g)** $\sin \theta = -0.7317$
- **h)** $\cos \theta = -0.3640$
- **i)** $\tan \theta = 2.4751$
- **j**) $\sin \theta = -0.9511$
- **k)** $\cos \theta = 0.1829$
- 1) $\tan \theta = 0.0543$
- **14.** Determine another angle that has the same trigonometric ratio as each given angle. Draw a sketch with both angles labelled.
 - a) sin 75°
- **b)** cos 190°
- **c)** tan 355°
- **d)** sin 252°

- **15.** Draw a diagram, and then determine values for the other primary trigonometric ratios, to four decimal places.
 - a) $\sin A = 0.9138$; $\angle A$ lies in quadrant I
 - b) $\cos B = -0.2145$; $\angle B$ lies in quadrant II
 - c) $\tan C = -8.144$; $\angle C$ lies in quadrant IV
- **16.** Determine the approximate measures of all angles from 0° to 360° in each case.
 - a) The sine ratio is 0.3195.
 - **b)** The tangent ratio is 1.4385.
 - c) The cosine ratio is -0.7431.
- ★ 17. a) If $\cos \theta = \frac{1}{3}$, find two possible values for $\sin \theta$.
 - **b)** For each value of $\sin \theta$ from part a), find the value(s) of θ .
- **★18.** The point S(-5, -6) is on the terminal arm of $\angle A$.
 - a) Determine the primary trigonometric ratios for $\angle A$.
 - **b)** Determine the measure of $\angle A$.
 - c) Determine the primary trigonometric ratios for $\angle B$ such that $\sin B = \sin A$.
 - **d)** Determine the measure of $\angle B$.

C \Rightarrow 19. a) Solve $2x^2 - x - 1 = 0$.

- b) Explain how the equation in part a) is related to $2 \sin^2 \theta \sin \theta 1 = 0$.
- c) Solve $2 \sin^2 \theta \sin \theta 1 = 0$.
- **20.** Determine all the possible measures of θ , where $0^{\circ} \le \theta \le 360^{\circ}$.
 - **a)** $\cos^2 \theta 1 = 0$
- **b)** $\tan^2 \theta = 3$
- **21.** Given $\tan \mathbf{A} = \frac{a+b}{a-b}$ and $\angle \mathbf{A}$ in quadrant I, determine expressions for $\sin \mathbf{A}$ and $\cos \mathbf{A}$. State any restrictions on the values of a and b.