KEY CONCEPTS

- For the functions $y = \sin(x d) + c$ and $y = \cos(x d) + c$, d represents the phase shift, or horizontal translation, and c represents the vertical shift, or vertical translation.
- For $y = \sin(x d) + c$ and $y = \cos(x d) + c$, the amplitude is 1, the period is 360°, the horizontal shift is d, the vertical shift is c, the domain is $\{x \in \mathbb{R}\}$, and the range is $\{y \in \mathbb{R}, (-1+c) \le y \le (1+c)\}.$
- When graphing transformations of trigonometric functions, it is helpful to transform key points, such as the x-intercepts and y-intercepts and the maximum/minimum points.

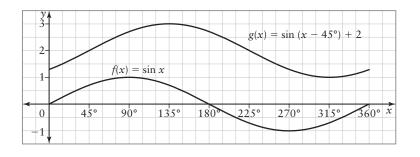
Example

Make a table of values, and then graph $f(x) = \sin x$ and $g(x) = \sin (x - 45^{\circ}) + 2$ on the same coordinate grid on the interval $0^{\circ} \le x \le 360^{\circ}$.

- a) Determine the period and the amplitude of f(x) and g(x).
- **b)** Determine the phase shift and the vertical shift of g(x) relative to f(x).
- c) Do the translations affect the period and amplitude? Explain.
- **d)** Determine the domain and range of f(x) and g(x).

Solution

x	f(x)	g(x)
0°	0	1.034
45°	0.707	2
90°	1	2.707
135°	0.707	3
180°	0	2.707
225°	-0.707	2
270°	-1	1.293
315°	-0.707	1
360°	0	2

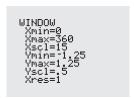


- a) Both f(x) and g(x) have amplitude 1 and period 360°.
- b) The phase shift is 45° to the right and the vertical shift is 2 up.
- c) No, the translations do not change the shape of the function, only the position.
- **d)** For f(x), the domain is $\{x \in \mathbb{R}\}$ and the range is $\{y \in \mathbb{R}, -1 \le y \le 1\}$. For g(x), the domain is $\{x \in \mathbb{R}\}$ and the range is $\{y \in \mathbb{R}, 1 \le y \le 3\}$.

A

1. Use Technology

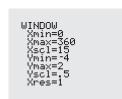
a) Graph $f(x) = \sin x$, $g(x) = \sin (x - 30^{\circ})$, and $h(x) = \sin (x + 60^{\circ})$ on the same screen. Use these window settings.



- **b)** How do the graphs of g(x) and h(x) compare to the graph of f(x)? Refer to the key features of the functions in your answer.
- c) Predict the key features of the graphs of $p(x) = \sin(x 15^\circ)$ and $q(x) = \sin(x + 45^\circ)$.
- **d)** Graph p(x) and q(x) to confirm your predictions.

2. Use Technology

a) Graph $b(x) = \sin x$, $c(x) = \sin x + 1$, and $d(x) = \sin x - 2$ on the same screen. Use these window settings.



- **b)** How do the graphs of c(x) and d(x) compare to the graph of b(x)? Refer to the key features of the functions in your answer.
- c) Predict the key features of the graphs of $f(x) = \sin x 3$ and $g(x) = \sin x + 4$.
- **d)** Graph f(x) and g(x) to confirm your predictions.

3. Determine the phase shift of each function.

a)
$$y = \sin(x - 60^{\circ})$$

b)
$$y = \cos(x + 90^{\circ})$$

c)
$$y = \sin(x + 30^\circ)$$

d)
$$y = \cos(x + 45^{\circ})$$

e)
$$y = \sin(x - 90^{\circ})$$

f)
$$y = \cos(x - 45^{\circ})$$

4. Determine the vertical shift and state the range of each function.

a)
$$y = \sin x + 3$$

b)
$$y = \cos x + 4$$

c)
$$y = \sin x - 5$$

d)
$$y = \cos x - 6$$

e)
$$y = \sin x - 2$$

$$f) v = \cos x + 1$$

5. Determine the phase shift and the vertical shift with respect to $y = \sin x$ for each function.

a)
$$y = \sin(x + 46^\circ) + 2$$

b)
$$y = \sin(x + 72^{\circ}) - 3$$

c)
$$y = \sin(x - 65^\circ) + 4$$

d)
$$y = \sin(x - 41^{\circ}) - 5$$

e)
$$y = \sin(x + 27^{\circ}) - 6$$

f)
$$y = \sin(x - 80^\circ) + 1$$

6. Determine the phase shift and the vertical shift with respect to $y = \cos x$ for each function.

a)
$$y = \cos(x - 32^\circ) + 2$$

b)
$$y = \cos(x + 55^{\circ}) - 4$$

c)
$$y = \cos(x + 73^{\circ}) - 7$$

d)
$$y = \cos(x - 42^{\circ}) + 3$$

e)
$$y = \cos(x - 18^{\circ}) - 1$$

f)
$$y = \cos(x + 64^{\circ}) - 2$$

B

- 7. Refer to your answers to questions 1 to 6. Explain how you can use the key features of sinusoidal functions to graph translated functions.
- **8.** For each function, determine the horizontal or vertical shift, and then sketch two complete cycles.

a)
$$y = \sin x + 2$$

b)
$$y = \sin(x - 45^{\circ})$$

c)
$$y = \cos(x + 30^{\circ})$$

d)
$$y = \cos x - 3$$

9. For each function, determine the phase shift and the vertical shift, and then sketch two complete cycles.

a)
$$y = \sin(x - 25^\circ) + 1$$

b)
$$y = \sin(x + 35^{\circ}) - 2$$

$$(x + 50^{\circ}) y = \cos(x + 50^{\circ}) - 3$$

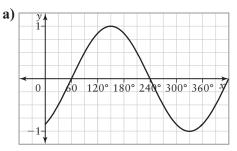
d)
$$y = \cos(x - 20^{\circ}) + 4$$

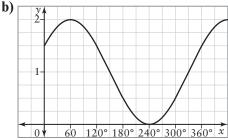
e)
$$y = \sin(x + 60^\circ) - 2$$

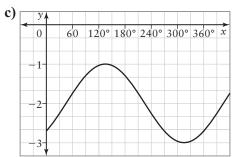
f)
$$y = \cos(x + 45^\circ) + 3$$

- **10.** How can you tell from the equation of a sinusoidal function if a translation represents a phase shift or a vertical shift?
- **11.** Write the equation of each transformed function.
 - a) The function $y = \sin x$ is transformed so that it has a phase shift left 58° and a vertical shift down 4.
 - **b)** The function $y = \cos x$ is transformed so that it has a phase shift right 67° and a vertical shift up 5.
 - c) The function $y = \cos x$ is translated 41° left and 8 units down.
 - d) The function $y = \sin x$ is translated 15° right and 2 units up.
- 12. Graph $y = \sin x$ and $y = \cos (x 90^\circ)$ on the same set of axes. What do you notice? Explain.

13. For each graph, write two equations, one in the form $y = \sin(x - d) + c$ and one in the form $y = \cos(x - d) + c$.







\mathbf{C}

14. Use Technology

- a) Graph $y = \sqrt{\sin x}$ over two cycles.
- b) How do you think:
 - i) the graphs of $y = \sqrt{\sin x} + 2$ and $y = \sqrt{\sin x}$ will differ?
 - ii) the graphs of $y = \sqrt{\sin (x 60^\circ)}$ and $y = \sqrt{\sin x}$ will differ? Check, using technology.

15. Use Technology

- a) Graph $y = \sqrt{\cos x}$ over two cycles.
- **b)** How do you think:
 - i) the graphs of $y = \sqrt{\cos x} 3$ and $y = \sqrt{\cos x}$ will differ?
 - ii) the graphs of $y = \sqrt{\cos(x + 45^\circ)}$ and $y = \sqrt{\cos x}$ will differ? Check, using technology.