Chapter 3 Model With Vectors

3.1 Vectors

KEY CONCEPTS

- A scalar is a quantity—such as time, temperature, or volume—that describes magnitude.
- A vector is a quantity—such as displacement or velocity—that has both magnitude and direction.
- A vector, \vec{v} , can be represented as a directed line segment with an arrowhead that indicates the direction. The magnitude of the vector, $|\vec{v}|$, is represented by the length of the directed line segment.

- The tail of a vector is defined as the origin of the vector.

 The head of the vector is defined as the tip or the arrowhead.
- Vector \overrightarrow{AB} has magnitude $|\overrightarrow{AB}|$.

• Equivalent vectors, or equal vectors, have the same magnitude and direction, but may have different positions.

• Opposite vectors have the same magnitude, but are opposite in direction.

• Direction can be expressed as a true bearing (or bearing) or as a quadrant bearing. A bearing is an angle measured clockwise from north and expressed as a three-digit number. A quadrant bearing is an angle between 0° and 90° measured east or west of the north-south line.

The bearing 150° is equivalent to the quadrant bearing S30°E

Example

Describe each vector in words.

a)

b)

Solution

- a) A force of 8.7 N on a quadrant bearing of S25°W.
- b) Displacement of 32 m at a bearing of 110°.

- 1. Classify each quantity as a vector or a scalar. Explain your choice.
 - a) the time on an alarm clock
 - **b)** the force of gravity
 - c) the temperature of a room
 - d) a car travelling north at 100km/h
 - e) a mass of 9 kg
 - f) a weight of 9 N
 - g) a car travelling at 60 km/h
- 2. Draw each vector, and then state its opposite.
 - a) displacement of 500 km east
 - **b)** force of 400 N on a bearing of 135°
 - c) velocity of 250 km/h on a quadrant bearing of N35°W
 - d) velocity of 50 mph on a bearing of 080°
- 3. Classify each quantity as a vector or a scalar.
 - a) 15 km^2
- **b)** 8 m/s NE
- c) 20 °C
- d) 12 km up
- e) $-\vec{q}$
- **f)** 70 km/h

4. Describe the magnitude and direction of each vector in words and in symbols.

- 5. Express as a quadrant bearing.
 - a) 030°
- **b)** 150°
- c) 225°
- **d)** 325°
- **6.** Express as a true bearing.
 - a) S40°E
- **b)** N30°W
- **c)** S60°W
- **d)** N70°E

- 7. Choose an appropriate scale. Draw and label a diagram.
 - a) 80 km/h on a bearing of 210°
 - **b)** 5 m/s² on a bearing of 060°
 - c) 50 m N40°W
 - d) 500 N 25° up from the horizontal

- **★8.** Determine whether a vector is a suitable mathematical model to represent each situation. Explain your reasoning.
 - a) A marble rolls across a table at 1 cm/s.
 - **b)** Dan pushes a box with a force of 100 N toward the east.
 - c) An alarm has an intensity of 70 dB.
 - d) A car travels southwest at 100 km/h.
 - e) A plane flies 200 m east.
 - f) A package has a weight of 50 N.
 - g) A dog has a mass of 13 kg.
 - h) A bus drives north for 2 h.
 - **9.** For each vector,
 - i) Write a vector that is the opposite.
 - ii) Write a vector that is parallel to, but not equivalent to, the given vector.
 - iii) Write a vector with the same magnitude as the given vector, but with a different direction.
 - a) 200 m/s on a bearing of 130°
 - b) 25 km in the direction S35°E
- \gtrsim 10. Al drove 7 km east, then 24 km south.
 - a) Calculate the magnitude of the displacement vector, to the nearest tenth of a kilometre.
 - **b)** Determine the bearing of Al's car, to the nearest degree.
 - c) Is the distance that Al travelled the same as the magnitude of the displacement vector? Explain.
 - 11. Is each statement reasonable? Explain.
 - a) $|\vec{u}| > |\vec{v}|$
 - b) $\vec{u} > \vec{v}$
 - c) $|\vec{u}| = -3 \text{ cm/s}$

12. ABCD is a rhombus.

- a) Which vector is equivalent to \overrightarrow{AB} ?
- **b)** Which vector is opposite to AD?
- c) Is each statement true? Explain.

i)
$$\overrightarrow{DA} = \overrightarrow{CB}$$

i)
$$\overrightarrow{DA} = \overrightarrow{CB}$$
 ii) $\overrightarrow{AB} = -\overrightarrow{CD}$

iii)
$$\overrightarrow{DC} = -\overrightarrow{BA}$$
 iv) $\overrightarrow{AC} = \overrightarrow{BD}$

iv)
$$\overrightarrow{AC} = \overrightarrow{BD}$$

\mathbf{C}

13. The edges of this cube are vectors.

a) State an equivalent vector.

i)
$$\overrightarrow{AB}$$

ii)
$$\overrightarrow{\mathrm{DH}}$$

iii)
$$\overrightarrow{AC}$$

iv)
$$\overrightarrow{\mathrm{DG}}$$

b) State an opposite vector.

i)
$$\overrightarrow{FH}$$

ii)
$$\overrightarrow{FG}$$

iii)
$$\overrightarrow{BE}$$

iv)
$$\overrightarrow{\mathrm{DG}}$$

14. These vectors are equivalent. Determine the missing coordinates.

