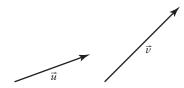

KEY CONCEPTS

- Two or more vectors can be added together to find a single vector, called the resultant.
- Vectors can be added by applying one vector after the other.
- Two vectors can be added using the head-to-tail (triangle) method or the parallelogram method.
- Given two parallel vectors, \vec{u} and \vec{v} , in the same direction, $|\vec{u} + \vec{v}| = |\vec{u}| + |\vec{v}|$ and $\vec{u} + \vec{v}$ is in the same direction as \vec{u} and \vec{v} .

• Given two parallel vectors, \vec{u} and \vec{v} , with opposite directions and $|\vec{u}| > |\vec{v}|, |\vec{u} + \vec{v}| = |\vec{u}| - |\vec{v}|$ and $\vec{u} + \vec{v}$ is in the same direction as \vec{u} .

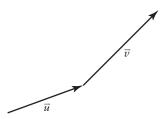
- The zero vector, $\vec{0}$, has zero magnitude and no specific direction. Adding two opposite vectors results in the zero vector.
- For any vectors \vec{u} , \vec{v} , and \vec{w} ,

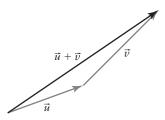

 $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (commutative property)

 $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (associative property)

 $\vec{v} + \vec{0} = \vec{v} = \vec{0} + \vec{v}$ (identity property)

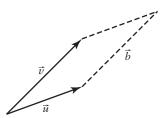
Example

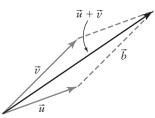

Consider two vectors, \vec{u} and \vec{v} .


- a) Find $\vec{u} + \vec{v}$ using the head-to-tail (triangle) method.
- **b)** Find $\vec{u} + \vec{v}$ using the parallelogram method.

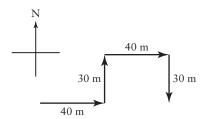
Solution

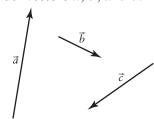
a) Translate \vec{v} so that the tail of \vec{v} touches the head of \vec{u} .


Find the sum by drawing and measuring the distance from the tail of \vec{u} to the head of \vec{v} . This new vector is the resultant $\vec{u} + \vec{v}$, which is the sum of \vec{u} and \vec{v} .


b) Translate \vec{v} so that the tail of \vec{v} touches the tail of \vec{u} .

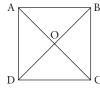
Complete the parallelogram that has \vec{u} and \vec{v} as two of its sides.


Because of the properties of a parallelogram, \vec{b} and \vec{v} are equivalent vectors, so $\vec{u} + \vec{v} = \vec{u} + \vec{b}$.

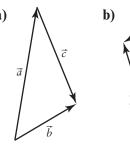

A

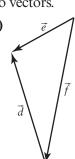
Round all lengths to the nearest tenth of a unit and all angle measures to the nearest degree.

- 1. Draw the resultant vector.
 - a) $\xrightarrow{3 \text{ cm}}$ + $\xrightarrow{5 \text{ cm}}$
 - **b)** 10 cm/s 7 cm/s
 - c) 3 N + 6 N
- **2.** Natasha and Mina went for a walk. The diagram shows their path.



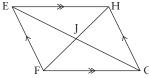
- a) Determine the distance travelled and the displacement.
- **b)** Are the distance and the displacement the same or different for each pair of vectors? Explain.
- c) What must be true for the distance travelled and the magnitude of the displacement to be equal? Explain.
- 3. Consider vectors \vec{a} , \vec{b} , and \vec{c} .




- a) Draw a diagram for each sum.
 - i) $\vec{a} + \vec{b} + \vec{c}$
 - ii) $\vec{b} + \vec{c} + \vec{a}$
 - iii) $\vec{c} + \vec{a} + \vec{b}$
- **b)** What do you notice about the resultant vectors for parts i), ii), and iii)? Explain.

4. O is the centre of square ABCD. Name a vector equivalent to each sum.

- a) $\overrightarrow{AO} + \overrightarrow{OC}$
- **b)** $\overrightarrow{AO} + \overrightarrow{OB}$
- c) $\overrightarrow{CD} + \overrightarrow{DA}$
- d) $\overrightarrow{BD} + \overrightarrow{DC}$
- 5. Refer to your answers to question 4.
 - a) In each case, what is true about the endpoint of the first vector and start point of the second vector?
 - b) Explain how to find the endpoints of the resultant vector from the endpoints of the two given vectors.
- **6.** In each case, express one vector as the sum of the other two vectors.



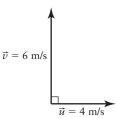
В

- 7. In rhombus ABCD, E is the intersection of diagonals AC and BD. Name a vector equivalent to each expression.
 - a) $\overrightarrow{CD} + \overrightarrow{AD}$
 - **b)** $\overrightarrow{BC} + \overrightarrow{BA}$
 - c) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$

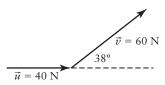
8. In parallelogram EFGH, J is the intersection of diagonals EG and FH. Name a vector equivalent to each expression.


a)
$$\overrightarrow{HF} + \overrightarrow{FG}$$

b)
$$\overrightarrow{EH} + \overrightarrow{HG} + \overrightarrow{GF}$$


c)
$$\overrightarrow{EF} + \overrightarrow{FH} + \overrightarrow{HG}$$

d)
$$\overrightarrow{FH} + \overrightarrow{HF}$$


 $\not\approx$ 9. a) Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$.

- **b)** Determine the direction of $\vec{u} + \vec{v}$ relative to \vec{u} .
- 210. a) Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$.

- b) Determine the direction of the resultant vector, $\vec{u} + \vec{v}$, relative to \vec{u} .
- **★11. a)** Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$.

b) Determine the direction of the resultant vector, $\vec{u} + \vec{v}$.

- **12.** Vector \vec{u} has magnitude 30 N and vector \vec{v} has magnitude 40 N. When placed tail-to-tail, the angle between \vec{u} and \vec{v} is 50°.
 - a) Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$.
 - **b)** Determine the direction of the resultant vector, $\vec{u} + \vec{v}$.
- 13. A boat sails 20 km N20°E, and then turns and travels 12 km S30°E.
 - a) Determine the angle between the vectors that represent each leg of the journey.
 - b) Determine the magnitude of the resultant vector.
 - c) Determine the quadrant bearing of the resultant vector.
- 14. What force must be added to a 17-N force in the direction 039° to have a resultant force of 40 N in the direction 139°?
- 15. Let A, B, C, and O represent four different points.
 - a) Express each vector in terms of \overrightarrow{OA} and \overrightarrow{OB} .

i)
$$\overrightarrow{AB}$$

ii)
$$\overrightarrow{BC}$$

iii)
$$\overline{\text{CA}}$$

iv)
$$\overrightarrow{AB} + \overrightarrow{BC}$$

i) \overrightarrow{AB} ii) \overrightarrow{BC} iii) \overrightarrow{CA} iv) $\overrightarrow{AB} + \overrightarrow{BC}$ b) Show that $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \vec{0}$.

- 16. An airplane needs to travel 900 km due north at 400 km/h. There is a wind from the west at 20 km/h.
 - a) What heading must the plane take in order to head due north?
 - **b)** How long will it take the airplane to reach its destination?
- **17.** Prove that the statement $|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$ is true for all vectors.
- 18. ABCD is a parallelogram. P, Q, R, and S are the midpoints of AB, BC, DC, and DA, respectively. Use vector methods to prove that PQRS is a parallelogram.