KEY CONCEPTS - Two or more vectors can be added together to find a single vector, called the resultant. - Vectors can be added by applying one vector after the other. - Two vectors can be added using the head-to-tail (triangle) method or the parallelogram method. - Given two parallel vectors, \vec{u} and \vec{v} , in the same direction, $|\vec{u} + \vec{v}| = |\vec{u}| + |\vec{v}|$ and $\vec{u} + \vec{v}$ is in the same direction as \vec{u} and \vec{v} . • Given two parallel vectors, \vec{u} and \vec{v} , with opposite directions and $|\vec{u}| > |\vec{v}|, |\vec{u} + \vec{v}| = |\vec{u}| - |\vec{v}|$ and $\vec{u} + \vec{v}$ is in the same direction as \vec{u} . - The zero vector, $\vec{0}$, has zero magnitude and no specific direction. Adding two opposite vectors results in the zero vector. - For any vectors \vec{u} , \vec{v} , and \vec{w} , $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (commutative property) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (associative property) $\vec{v} + \vec{0} = \vec{v} = \vec{0} + \vec{v}$ (identity property) ## Example Consider two vectors, \vec{u} and \vec{v} . - a) Find $\vec{u} + \vec{v}$ using the head-to-tail (triangle) method. - **b)** Find $\vec{u} + \vec{v}$ using the parallelogram method. ## **Solution** a) Translate \vec{v} so that the tail of \vec{v} touches the head of \vec{u} . Find the sum by drawing and measuring the distance from the tail of \vec{u} to the head of \vec{v} . This new vector is the resultant $\vec{u} + \vec{v}$, which is the sum of \vec{u} and \vec{v} . **b)** Translate \vec{v} so that the tail of \vec{v} touches the tail of \vec{u} . Complete the parallelogram that has \vec{u} and \vec{v} as two of its sides. Because of the properties of a parallelogram, \vec{b} and \vec{v} are equivalent vectors, so $\vec{u} + \vec{v} = \vec{u} + \vec{b}$. ## A Round all lengths to the nearest tenth of a unit and all angle measures to the nearest degree. - 1. Draw the resultant vector. - a) $\xrightarrow{3 \text{ cm}}$ + $\xrightarrow{5 \text{ cm}}$ - **b)** 10 cm/s 7 cm/s - c) 3 N + 6 N - **2.** Natasha and Mina went for a walk. The diagram shows their path. - a) Determine the distance travelled and the displacement. - **b)** Are the distance and the displacement the same or different for each pair of vectors? Explain. - c) What must be true for the distance travelled and the magnitude of the displacement to be equal? Explain. - 3. Consider vectors \vec{a} , \vec{b} , and \vec{c} . - a) Draw a diagram for each sum. - i) $\vec{a} + \vec{b} + \vec{c}$ - ii) $\vec{b} + \vec{c} + \vec{a}$ - iii) $\vec{c} + \vec{a} + \vec{b}$ - **b)** What do you notice about the resultant vectors for parts i), ii), and iii)? Explain. **4.** O is the centre of square ABCD. Name a vector equivalent to each sum. - a) $\overrightarrow{AO} + \overrightarrow{OC}$ - **b)** $\overrightarrow{AO} + \overrightarrow{OB}$ - c) $\overrightarrow{CD} + \overrightarrow{DA}$ - d) $\overrightarrow{BD} + \overrightarrow{DC}$ - 5. Refer to your answers to question 4. - a) In each case, what is true about the endpoint of the first vector and start point of the second vector? - b) Explain how to find the endpoints of the resultant vector from the endpoints of the two given vectors. - **6.** In each case, express one vector as the sum of the other two vectors. В - 7. In rhombus ABCD, E is the intersection of diagonals AC and BD. Name a vector equivalent to each expression. - a) $\overrightarrow{CD} + \overrightarrow{AD}$ - **b)** $\overrightarrow{BC} + \overrightarrow{BA}$ - c) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$ **8.** In parallelogram EFGH, J is the intersection of diagonals EG and FH. Name a vector equivalent to each expression. a) $$\overrightarrow{HF} + \overrightarrow{FG}$$ b) $$\overrightarrow{EH} + \overrightarrow{HG} + \overrightarrow{GF}$$ c) $$\overrightarrow{EF} + \overrightarrow{FH} + \overrightarrow{HG}$$ d) $$\overrightarrow{FH} + \overrightarrow{HF}$$ $\not\approx$ 9. a) Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$. - **b)** Determine the direction of $\vec{u} + \vec{v}$ relative to \vec{u} . - 210. a) Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$. - b) Determine the direction of the resultant vector, $\vec{u} + \vec{v}$, relative to \vec{u} . - **★11. a)** Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$. **b)** Determine the direction of the resultant vector, $\vec{u} + \vec{v}$. - **12.** Vector \vec{u} has magnitude 30 N and vector \vec{v} has magnitude 40 N. When placed tail-to-tail, the angle between \vec{u} and \vec{v} is 50°. - a) Determine the magnitude of the resultant vector, $\vec{u} + \vec{v}$. - **b)** Determine the direction of the resultant vector, $\vec{u} + \vec{v}$. - 13. A boat sails 20 km N20°E, and then turns and travels 12 km S30°E. - a) Determine the angle between the vectors that represent each leg of the journey. - b) Determine the magnitude of the resultant vector. - c) Determine the quadrant bearing of the resultant vector. - 14. What force must be added to a 17-N force in the direction 039° to have a resultant force of 40 N in the direction 139°? - 15. Let A, B, C, and O represent four different points. - a) Express each vector in terms of \overrightarrow{OA} and \overrightarrow{OB} . i) $$\overrightarrow{AB}$$ ii) $$\overrightarrow{BC}$$ iii) $$\overline{\text{CA}}$$ iv) $$\overrightarrow{AB} + \overrightarrow{BC}$$ i) \overrightarrow{AB} ii) \overrightarrow{BC} iii) \overrightarrow{CA} iv) $\overrightarrow{AB} + \overrightarrow{BC}$ b) Show that $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \vec{0}$. - 16. An airplane needs to travel 900 km due north at 400 km/h. There is a wind from the west at 20 km/h. - a) What heading must the plane take in order to head due north? - **b)** How long will it take the airplane to reach its destination? - **17.** Prove that the statement $|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$ is true for all vectors. - 18. ABCD is a parallelogram. P, Q, R, and S are the midpoints of AB, BC, DC, and DA, respectively. Use vector methods to prove that PQRS is a parallelogram.