KEY CONCEPTS

- Exponential equations in one variable can be solved by determining a common base.
- The solutions to exponential equations may be exact answers or approximate answers. When solutions to exponential equations cannot be easily determined by finding a common base, approximate solutions can be found using systematic trial on a scientific calculator.

Example

- a) Solve the exponential equation $2^{5x+2} = 8^x$ by determining a common base.
- **b)** Use substitution to verify your answer to part a).
- c) Use a graphing calculator and the **Intersect** operation to verify your answer to part a).
- d) Use a table of values for each of the corresponding functions to determine the solution to the exponential equation in part a).

Solution

a)
$$2^{5x+2} = 8^x$$
 Rewrite 8 using a base of 2.
 $2^{5x+2} = (2^3)^x$ Apply the power of a power rule.
 $2^{5x+2} = 2^{3x}$

Since the bases are equal, the exponents must be equal.

$$5x + 2 = 3x$$
 Solve for x.

$$2x = -2$$

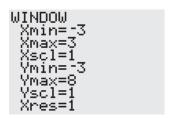
$$x = -1$$

The solution is x = -1.

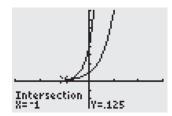
b) For
$$x = -1$$
,
L.S. $= 2^{5x+2}$ R.S. $= 8^x$
 $= 2^{5(-1)+2}$ $= 8^{(-1)}$
 $= 2^{-5+2}$ $= 8^{-1}$
 $= 2^{-3}$ $= \frac{1}{2^3}$
 $= \frac{1}{8}$
L.S. $= R.S$.

Therefore, $2^{5x+2} = 8^x$ for x = -1.

c) Graph the functions $y = 2^{5x+2}$ and $y = 8^x$ using a graphing calculator. Use the window settings shown.



Use the **Intersect** operation to determine the point of intersection of the two functions. The two graphs intersect at the point where x = -1 and y = 0.125.



d) Using a table of values for the functions $y = 2^{5x+2}$ and $y = 8^x$ on a graphing calculator, the y-values are the same for the x-value of -1.

X	Y1	Y2
13 0 12 3	1.2E-4 .00391 .125 4 128 4096 131072	.00195 .01563 .125 1 8 64 512
X= -1		

A

1. Solve each of the following equations by determining a common base.

a)
$$5^x = 125$$

b)
$$2^x = 128$$

c)
$$3^x = 81$$

d)
$$7^x = 1$$

e)
$$4^x = \frac{1}{64}$$

f)
$$\left(\frac{2}{3}\right)^x = \frac{8}{27}$$

2. Solve each of the following equations by determining a common base. Check your answers using graphing technology.

a)
$$2^{4x} = 4^{x+3}$$

b)
$$25^{x-1} = 5^{3x}$$

c)
$$3^{w+1} = 9^{w-1}$$

d)
$$36^{3m+1} = 6^{m-8}$$

e)
$$4^{3x} = 8^{x-3}$$

f)
$$27^x = 9^{2x-3}$$

- **3. Use Technology** Use systematic trial to find an approximate solution to the following equations. Round your answer to one decimal place.
 - **a)** $3^x = 4$
 - **b)** $5^x = 7$
 - c) $-4^x = -3$

B

- **4.** Solve each of the following exponential equations by expressing both sides of the equation as a power with a common base. Express your answers as fractions in lowest terms.
 - **a)** $\left(\frac{4}{25}\right)^x = \frac{125}{8}$
 - **b)** $\left(3\frac{1}{2}\right)^{3x} = \frac{4}{49}$
 - c) $\left(8^{\frac{1}{2}}\right)^{x+2} = (64^2)^{x-1}$
 - **d)** $(\sqrt{8})^{x+2} = (\sqrt[3]{32})^{x-3}$
- **5. a)** Solve the exponential equation $3^{7x-3} = 81^x$ by determining a common base.
 - **b)** Use substitution to verify your answer to part a).
 - c) Describe two different ways of using a graphing calculator to verify the solution from part a).
- ★6. Use Technology Use systematic trial with a scientific calculator to determine the solution to the exponential equation $1.03^x = 1083$, to one decimal place.
 - 7. Use Technology Use systematic trial with a scientific calculator to determine the solution to the equation $2.05^x = 78440$, to one decimal place.
 - 8. A radioactive sample with an initial mass of 50 mg has a half-life of 4 days. Half-life is the time is takes for a quantity to decrease to half of its original amount.

- a) Write an equation that models this exponential decay, where *t* is the time, in days, and *A* is the amount of the substance that remains.
- b) What is the amount of radioactive material remaining in the sample after 10 days? Round your answer to the nearest tenth of a milligram.
- c) How long will it take for the radioactive sample to decay to 6.25 mg?
- 9. Solve the exponential equation $9^{4x-2} = 3^{2(x+5)}$ by determining a common base. Express your answer as a fraction in lowest terms.
- ★10. a) Solve the exponential equation $25^{4x+3} = 125^{3x}$ by determining a common base.
 - **b)** Use substitution to verify your answer to part a).

\mathbf{C}

- 11. a) How are the equations $2^{2x} 3(2^x) + 2 = 0$ and $a^2 3a + 2 = 0$ related?
 - **b)** Use your answer from part a) to solve $2^{2x} 3(2^x) + 2 = 0$.
- **12.** A chain hanging between two posts is in the shape of a catenary, which is a curve that approximates a parabola. The equation of the path of the catenary is $v = 0.1 \left(2^{\frac{x}{2}} + 2^{-\frac{x}{2}}\right)$.
 - **a)** Use Technology Use a graphing calculator to graph this relation.
 - **b)** Is this relation a function? Justify your answer.
 - c) This relation is similar to a relation that you have studied before. State the name of this relation.
 - **d)** State the coordinates of the minimum point of the relation $y = 0.1(2^{\frac{x}{2}} + 2^{-\frac{x}{2}})$.