KEY CONCEPTS

- The inverse of $y = b^x$ is $x = b^y$, which can be written as $y = \log_b x$.
- The logarithmic function is defined as $y = \log_b x$, or the logarithm, base b, of x.
- The domain of the logarithmic function is $\{x \in \mathbb{R}, x > 0\}$.
- The range of the logarithmic function is $\{y \in \mathbb{R}\}$.

- The value of $\log_b x$ is equal to the exponent to which the base, b, must be raised to get the number, x.
- Logarithmic equations can be written in exponential form and vice versa.

$$y = \log_b x \longleftrightarrow x = b^y$$

- Logarithmic and exponential functions are defined only for positive values of the base that are not equal to 1; i.e., b > 0, $b \ne 1$.
- Logarithms with a base of 10 are called common logarithms. For common logarithms, you do not have to write the base: $\log x$ is understood to mean $\log_{10} x$.
- Logarithmic equations can be solved algebraically and graphically.

Example

- a) Rewrite $log_3 81 = 4$ in exponential form.
- **b)** Rewrite $5^3 = 125$ in logarithmic form.
- c) Evaluate $\log_2 128$.
- **d)** Evaluate log_{10} 1000.
- e) Use technology to determine the value of log₃ 5, to one decimal place.

Solution

- **a)** If $\log_3 81 = 4$, then $3^4 = 81$.
- **b)** If $5^3 = 125$, then $\log_5 125 = 3$.
- c) You can evaluate $\log_2 128$ by determining to what exponent the base 2 must be raised to get the result 128. Since $2^7 = 128$, the exponent is 7. Therefore, $\log_2 128 = 7$.

Alternatively, let $\log_2 128 = y$.

$$2^y = 128$$
 Express 128 as 2^7 .

$$2^y = 2^7$$
 Since the bases are equal, the exponents are equal.

$$y = 7$$

Therefore, $log_2 128 = 7$.

d) You can evaluate $\log_{10} 1000$ by determining to what exponent the base 10 must be raised to get the result 1000. Since $10^3 = 1000$, the exponent is 3. Therefore, $\log_{10} 1000 = 3$.

Alternatively, let $\log_{10} 1000 = y$.

$$10^y = 1000$$

Express 1000 as 10^3 .

$$10^y = 10^3$$

Since the bases are equal, the exponents are equal.

$$y = 3$$

Therefore, $\log_{10} 1000 = 3$.

e) Let $\log_3 5 = x$.

Express $\log_3 5 = x$ in exponential form as $3^x = 5$.

Graph $y = 3^x$ and y = 5 using a graphing calculator.

The x-value of the point of intersection of the two graphs is approximately 1.5.

The value of log_3 5 is 1.5, to one decimal place.

- 1. Write each equation in exponential form.
 - a) $\log_7 343 = 3$
 - **b)** $\log_2 16 = 4$
 - **c)** $\log_3\left(\frac{1}{81}\right) = -4$
 - $\mathbf{d)} \log_2 \left(\frac{1}{64} \right) = -6$
 - **e)** $0 = \log_5 1$
 - **f)** $\log_b b^2 = 2$
- 2. Explain why $\log_a \sqrt{a} = \frac{1}{2}$.
- 3. Rewrite each equation in logarithmic form.
- **a)** $5^2 = 25$ **b)** $2^6 = 64$ **c)** $4^{-2} = \frac{1}{16}$ **d)** $8^0 = 1$ **e)** $216 = 6^3$ **f)** $\frac{1}{27} = 3^{-3}$

- **4.** Evaluate each of the following logarithms.
 - **a)** log₂ 128
- **b)** $\log_3 243$
- c) $\log_5 625$
- **d)** $\log_{10} 0.001$
- **e)** $\log_6 216$ **f)** $\log_7 \left(\frac{1}{49}\right)$

- **5.** a) Evaluate $\log_2 1$.
 - **b)** Does the answer change if the base is changed? Explain why or why not.
- **6.** Explain why the base on a logarithm cannot be negative, 0, or 1. Consider the exponential form as you answer the question.
- 7. a) Evaluate each logarithm.
 - i) $\log_5 5$
 - ii) $\log_7 7$
 - **iii)** $\log_{10} 10$
 - **b)** Why is the answer the same to all three?
- **8.** Evaluate each common logarithm.
 - **a)** log 100
- **b)** log 0.1
- **c)** $\log \left(\frac{1}{1000} \right)$ **d)** $\log 10\,000$
- e) $\log 0.01$ f) $\log \left(\frac{1}{10^{-6}}\right)$
- **9.** a) Explain why log 0.01 and $\log \left(\frac{1}{100}\right)$ are equivalent.
 - b) Which form do you find easier to evaluate? Give a reason for your answer.

B

- **10.** Sketch a graph of the function $y = 3^x$ and its inverse on the same set of axes. Label each function.
- **11.** Copy and complete the following table for the functions $y = 10^x$ and $y = \log x$.

	$y=10^x$	$y = \log x$
Sketch of the graph		
Domain		
Range		
x-intercept(s)		
y-intercept(s)		
Vertical asymptote(s)		
Horizontal asymptote(s)		
Intervals of increase		
Intervals of decrease		

- **12.** The point (2, 8) is on the graph of $y = a^x$. What would be the corresponding point on the graph of $y = \log_a x$? Explain your reasoning.
- **13. a)** Explain how $y = 5^x$ can be used to evaluate $\log_5 13$.
 - b) Use Technology Use a graphing calculator to determine an approximate value for log₅ 13. Round your answer to one decimal place.
- **14. a)** State the x-intercept of the graph of $y = \log_7 x$.
 - **b)** Explain how your answer from part a) can be used to explain why $\log_7\left(\frac{1}{2}\right)$ must be less than 0.

c) Use Technology Use a graphing calculator to determine an approximate value for $\log_7\left(\frac{1}{2}\right)$. Round your answer to one decimal place.

\mathbf{C}

- **15. a)** Evaluate $\log_{10} 1000$.
 - **b)** Perform the following calculations with a calculator.
 - i) $\frac{\log 1000}{\log 10}$
 - ii) $\frac{\ln 1000}{\ln 10}$
 - c) What do you notice about your answers from part b)?
 - **d)** Use graphing technology or systematic trial to evaluate $\log_3 20$.
 - e) Perform the following calculations with a calculator.
 - $i) \ \frac{\log 20}{\log 3}$
 - ii) $\frac{\ln 20}{\ln 3}$
 - **f)** What do you notice about your answers from part e)?
 - g) Explain how you can use a calculator to evaluate log₂ 50.
- **16.** An investment pays 4% interest, compounded semi-annually.
 - a) Write a function to model the amount, A, of the investment in terms of time, t, in years.
 - b) Determine how long it will take for this investment to be worth double its current value.