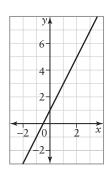
KEY CONCEPTS

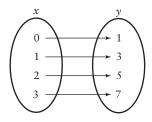
- A polynomial expression is a series of terms in which each term is the product of a constant and a power of x that has a whole number as the exponent.
- A polynomial expression has the form $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_2 x^2 + a_1 x + a_0$, where n is a whole number; x is the variable; the coefficients $a_0, a_1, ..., a_n$ are real numbers; the degree of the expression is n, the exponent of the greatest power of x; a_n , the coefficient of the greatest power of x, is the leading coefficient; and a_0 , the term without a variable, is the constant term.
- A relation is a relationship between two variables that may be expressed as ordered pairs, an equation, a table of values, a graph, or a mapping diagram.

$$\{(0, 1), (1, 3), (2, 5), (3, 7)\}$$

$$y = 2x + 1$$

x	у
0	1
1	3
2	5
3	7





- A function is a relation between two variables, such as x and y, in which every value of x is mapped onto exactly one value of y.
- A vertical line test can be used to determine if the graph of a relation is a function. If a vertical line intersects the graph of a relation at more than one point, then the relation is not a function.
- The domain is the set of first coordinates, typically the x-coordinate, of the ordered pairs in a relation.
- The range is the set of second coordinates, typically the y-coordinate, of the ordered pairs in a relation.
- A polynomial function is a function of the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0.$
- The degree of a polynomial function in one variable is the greatest exponent of the variable in any one term.
- A constant function is a polynomial function of degree 0.

Example

Identify whether each of the following functions is a polynomial function. If it is not a polynomial function, state the type of function that it is.

a)
$$f(x) = 3x^2 + 2x - 5$$

b)
$$f(x) = 3^{x+2}$$

c)
$$f(x) = 4$$

$$\mathbf{d)}\,f(x)=\sin\,2x$$

e)
$$f(x) = 2x + 3$$

f)
$$f(x) = \sqrt{4x^2 - 3x + 2}$$

$$\mathbf{g}) f(x) = 4 \cos x$$

h)
$$f(x) = \frac{1}{x^2 - 3}$$

Solution

- a) This is a polynomial function of degree 2.
- b) This is not a polynomial function. It is an exponential function, since the base is a number and the exponent is a variable.
- c) This is a polynomial function of degree 0, or a constant function.
- **d)** This is not a polynomial function. It is a sinusoidal function.
- e) This is a polynomial function of degree 1.
- f) This is not a polynomial function. It is a square root function.
- g) This is not a polynomial function. It is a sinusoidal function.
- **h)** This is not a polynomial function. It is a rational function.

A

1. State the degree of each of the following polynomial expressions.

a)
$$5x^4$$

c)
$$-3x^5$$

d)
$$\frac{1}{2}x^6$$

f)
$$-0.5x^3$$

2. State the degree of each of the following polynomial expressions.

a)
$$4x^3 + 7x^2 - 3x$$
 b) $0.5x - 2$

b)
$$0.5x - 2$$

c)
$$3x^2 - 8x + 2$$

c)
$$3x^2 - 8x + 2$$
 d) $-x^4 + 9x^3 - 5$

3. State the degree of each of the following polynomial functions.

a)
$$f(x) = 0.5x^2 + 5x$$

b)
$$f(x) = -5x^4 + 2x^2 - 3$$

c)
$$f(x) = 7$$

$$\mathbf{d)} f(x) = 2x^3 - 4x^2 + 6x$$

e)
$$f(x) = -\frac{1}{5}x + 9$$

f)
$$f(x) = 7x^5 - 5x^3$$

4. Determine whether each of the following relations is a function. Justify your answer.

a)
$$v = 5x$$

b)
$$v = 4^x$$

c)
$$y = -3x^2$$

d)
$$x = y^2 + 3$$

e)
$$y = 7$$

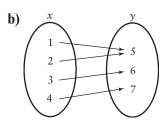
f)
$$y = x^2 + 3x - 5$$

g)
$$x = -3$$

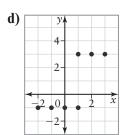
h)
$$x^2 + y^2 = 9$$

5. Describe how you can tell that an equation represents a non-function. Refer to question 4 in your answer.

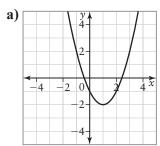
- **6.** For each relation, determine whether it is a function. Justify your answer.
 - **a)** $\{(1, 2), (2, 3), (3, 4), (4, 5)\}$

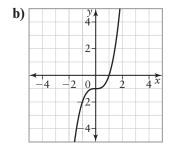


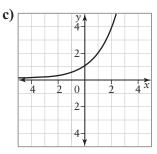
c) $\{(-1, 2), (2, 1), (2, 2), (3, 1)\}$

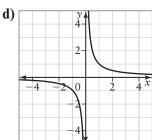


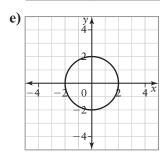
7. Determine which of the following graphs represent polynomial functions. If the relation is not a polynomial function, state the type of function that it is.

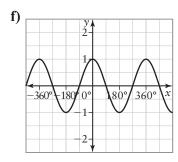












8. Identify whether each of the following functions is a polynomial function. If it is not a polynomial function, state the type of function that it is.

$$\mathbf{a)}\,f(x)=4^{x-3}$$

$$\mathbf{b)}\,f(x)=3x+4$$

$$\mathbf{c)} f(x) = 5 \sin x$$

$$\mathbf{d)}\,f(x) = \sqrt{x^2 - 2x}$$

e)
$$g(x) = -2x^2 - 3x + 5$$

$$\mathbf{f)} \, s(x) = \cos 3x$$

g)
$$h(x) = x^3 - 2$$

- 9. The function $f(x) = \frac{1}{x^2}$ can be written as $f(x) = x^{-2}$. Does this mean it is a polynomial function? Explain why or why not.
- **10.** Is the function defined by y = (x-1)(x+2) a polynomial function? Explain your reasoning. Explain how this form, called factored form, might be useful when graphing the function.
- \bigstar 11. Consider the functions y = 2x 5, y = 5x - 10, and y = 7x + 12.
 - a) Explain why they are polynomial functions.
 - **b)** What do the graphs have in common with each other?
 - c) Use Technology Use a graphing calculator to graph the functions on the same set of axes. When x increases (that is, approaches positive infinity, written as $x \to \infty$), what happens to the y-values in each of the functions? What happens to the y-values as x decreases (that is, approaches negative infinity, written as $x \to -\infty$?
- **★12.** Consider the functions $y = x^2 + 7$, $y = x^2 + 3x - 4$, and $y = 4x^4 - 9$.
 - a) Explain why they are polynomial functions.
 - **b)** What do the graphs have in common with each other?
 - c) Use Technology Use a graphing calculator to graph the functions on the same set of axes. When x increases (that is, approaches positive infinity, written as $x \to \infty$), what happens to the *v*-values in each of the functions? What happens to the y-values as x decreases (that is, approaches negative infinity, written as $x \to -\infty$?

- **★13. Use Technology** Consider the functions y = 2x - 1, $y = x^3 + x^2 - 3$, and $y = x^5 - x^2 + 7$.
 - a) Use a graphing calculator to graph the functions on the same set of axes.
 - **b)** What do the graphs have in common with each other?
 - c) How do they all differ from the graphs in question 12?
 - **14.** What does $y = 2^x$ have in common with the functions in questions 11, 12, and 13? How is this function different? How is the function $y = \sin x$ different from all of the functions in questions 11, 12, and 13?

- 15. An oil slick on the ocean is increasing in a circular pattern. The circumference of the oil slick, C, in metres, can be modelled by the function $C(r) = 2\pi r$, where r is the radius of the oil slick, in metres, and $0 \le r \le 10$.
 - a) Graph the function for $0 \le r \le 10$.
 - b) Determine the domain and the range of the function.
 - c) Compare the graph of $C(r) = 2\pi r$ to the graph of y = 2x. How are the graphs alike? How are the graphs different?
- **16.** The area, A, in square metres, of the oil slick in question 15 can be modelled by the function $A(r) = \pi r^2$, where r is the radius of the oil slick, in metres, and $0 \le r \le 10$.
 - a) Graph the function for $0 \le r \le 10$.
 - **b)** Determine the domain and the range of the function.
 - c) Compare the graph of A(r) to the graph of $y = x^2$. How are the graphs alike? How are the graphs different?