# **KEY CONCEPTS**

- Real-world applications can be modelled with polynomial functions.
- Key features of polynomial functions can be used to determine solutions to real-world problems.
- Certain aspects of real-world applications may result in restrictions on the domain of the polynomial functions that represent them.

# **Example**

The forces acting on a horizontal support beam in a garage cause it to sag by d centimetres, x metres from one end of the beam. The relationship between d and x can be represented by the polynomial function  $d(x) = \frac{1}{1800} (950x - 22x^3 + x^4)$ .

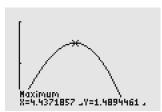
- a) Graph the function using technology.
- b) Determine the domain over which the function models the relationship between d and x. What do you think causes the restriction on the domain?
- c) Determine the maximum deflection of the beam.

#### **Solution**

- a) Graph the function using the window setting shown.
- b) The **Zero** operation can be used to determine that the right-most *x*-intercept of the graph is approximately 8.3. The domain of d(x) is  $\{x \in \mathbb{R}, 0 \le x \le 8.3\}$ . The deflection of the beam cannot be less than zero. The domain is determined by the length of the beam, which appears to be approximately 8.3 m.
- c) Use the Maximum operation.

The maximum deflection of the beam is approximately 1.5 m.





### A

- 1. A golf ball is hit from the ground and its height above the ground can be modelled by the function  $h(t) = -4.9t^2 + 30t$ , where h(t) is the height, in feet, and t is time, in seconds, since the ball was hit.
  - a) Determine the height of the golf ball after 2 s.
  - b) Determine the height of the golf ball after 5 s.
  - c) Determine the ball's initial height.
  - d) Use Technology Use a graphing calculator to determine how long the ball is in the air.
- **2.** The function  $d(t) = 4.9t^2$  may be used to model the approximate distance, d(t), in metres, travelled by a skydiver after jumping out of an airplane, where t is the time, in seconds.
  - a) Determine the distance travelled by the skydiver in the first 3 s after jumping out of the airplane.
  - b) Determine the distance travelled by the skydiver in the first 7 s after jumping out of the airplane.
  - c) How long does it take the skydiver to travel 510 m?
  - d) Part c) generates a quadratic equation that has two solutions. Why is only one of them valid?
- 3. The yearly profit, P(n), in thousands of dollars, for the sale of n thousand tennis balls can be modelled by the function  $P(n) = -0.08n^3 + 1.86n^2 + 8n$ .
  - a) Determine the yearly profit on the sale of 13000 tennis balls.
  - **b)** Determine the yearly profit on the sale of 20000 tennis balls.
  - c) For what number of tennis balls is the profit a maximum?
  - **d)** What is the domain of the function? Explain your reasoning.

- **4.** An oil tank is being drained. The volume, V(t), in litres, of oil remaining in the tank after t minutes can be modelled by the function  $V(t) = 0.28(28 - t)^3$ .
  - a) How much oil was in the tank initially? after 10 min? after 18 min?
  - b) After how many minutes was the tank drained?
  - c) How can you determine the domain of the function by simply examining the function?

- 5. The profit, P(x), in thousands of dollars, for the sale of a certain type of digital camera can be modelled by the function  $P(x) = 0.001 \ 31x^4 + x - 2$ , where x represents the number, in hundreds, of digital cameras sold.
  - a) What type of function is P(x)?
  - b) Which finite differences are constant for this polynomial function?
  - c) Describe the end behaviour of this function assuming there are no restrictions on the domain.
  - d) What are the restrictions on the domain of this function? Explain why there are restrictions.
- $\bigstar$ **6.** A patient's reaction time, R(t), in minutes, to a small dose of a certain drug is  $R(t) = -0.6d^3 + d^2$ , where d is the amount of the drug, in millilitres, that is absorbed into the patient's bloodstream.
  - a) What type of function is R(t)?
  - b) Which finite differences are constant for this polynomial function?
  - c) Describe the end behaviour of this function assuming there are no restrictions on the domain.
  - d) What are the restrictions on the domain of this function?

- 7. The population, P, of a town can be modelled by the function  $P(t) = 5t^4 4t^3 + 100t + 13000$ , where t is the time, in years, from the present time.
  - **a)** What is the population of the town now?
  - b) What will the population of the town be in 15 years?
- ★8. Shirley is draining the water out of her swimming pool. The amount of water remaining in the pool as it is being drained is given by the following table.

| Time (h) | Amount of Water<br>Remaining (L) |
|----------|----------------------------------|
| 0        | 17 750                           |
| 1        | 16 280                           |
| 2        | 14 870                           |
| 3        | 13 520                           |
| 4        | 12 230                           |
| 5        | 11 000                           |

Use finite differences for the data in the table to determine the type of polynomial function that best models this situation.

- **9.** A soccer ball is kicked into the air and the path that it follows can be modelled by the function  $h(t) = -4.9t^2 + 12t + 1$ , where t is in seconds and h(t) is in metres.
  - a) Describe the end behaviour of this function assuming there are no restrictions on the domain.
  - **b)** Determine the height of the ball after 1 s.
- 10. The purchase price, P(t), in dollars, to buy one share of stock in a company can be modelled by the function  $P(t) = -0.3t^3 + 2t^2 + 5t + 1$ , where t is the time, in years, from now.
  - a) Use Technology Use a graphing calculator to graph the function P(t).
  - b) Determine the price to purchase one share of stock in the company in 3 years.

- 11. The height, h(t), in metres, of a toy rocket above the ground can be modelled by the function  $h(t) = -4.9t^2 + 25t$ , where t is in seconds.
  - a) Use Technology Use a graphing calculator to graph the function h(t).
  - **b)** Determine the height of the rocket after 2 s.
  - c) Determine the height of the rocket after 4 s.
  - **d)** When will the rocket hit the ground? Round your answer to one decimal place, if necessary.
- 12. The distance, d(t), in metres, travelled by a windsurfer from shore can be modelled by the function  $d(t) = 0.002t^3 + 0.04t^2 + 0.3t$ , where t is the time, in seconds.
  - a) Use Technology Use a graphing calculator to graph the function d(t).
  - **b)** Determine the distance travelled by the windsurfer in 10 s.
  - c) When will the windsurfer have travelled 38 m?

## $\mathbf{C}$

- 13. A ball's height, h, in metres, t seconds after being thrown off a cliff is given by the function  $h(t) = -5t^2 + 15t + 50$ .
  - a) Determine the ball's initial height.
  - b) Use Technology Use graphing technology to determine the maximum height of the ball and when it occurs.
  - c) Determine the average speed of the ball during the first second after it was thrown.
  - **d)** Use Technology Use graphing technology to determine when the ball strikes the ground.
  - e) What was the ball's height one second before hitting the ground?